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Implementation and evaluation of CellScanner 1.0 1 

 2 

Introduction  3 

Resolving the composition of microbiome samples is an open challenge, when one considers 4 

the time and price of the available methods. For instance, 16S rRNA gene sequencing is a 5 

well-established method for this task, but it requires work-intensive steps to extract and 6 

amplify the DNA. Amplification introduces biases (1–4) and 16S rRNA gene copy number 7 

can differ from one species to another (5, 6). Due to these biases, total 16S rRNA read count 8 

per sample does not reflect total cell count and thus, read counts need to be converted to 9 

relative abundances. Absolute abundances can be obtained by multiplying these with the total 10 

cell count measured with flow cytometry or qPCR (7–10).  11 

Alternatively, flow cytometry (FC) can be employed to investigate community composition 12 

(11, 12). In flow cytometers, particles pass a laser beam in single file. Flow cytometers then 13 

collect scattered light or, in the case of fluorescence, emitted light that provides information 14 

about cell shape and size (13). If cells are stained with a fluorochrome, they become 15 

distinguishable through fluorescence (14). FC is a promising technique to monitor microbial 16 

communities thanks to its low cost, quick acquisition of results and the fact that it gives count 17 

data instead of relative abundances.  18 

Unsupervised techniques are commonly applied to FC data, for instance, to identify immune 19 

cells and cluster them by cell type (15, 16). Unsupervised classification also serves to identify 20 

clusters of interest in microbial communities (17–20) with tools such as FlowSom (21), 21 

FlowGrid (22), or, more recently, FlowEmmi (23) and FlowGateNIST (24). These clusters do 22 

not necessarily correspond to single species, but allow tracking changes in microbial 23 
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community composition across time or conditions. In some applications, diversity is assessed 24 

through cluster enumeration (25). 25 

The application of supervised classification to FC data was advocated by Frankel DS et al. 26 

(26) 30 years ago. The key idea is to train classifiers on FC monoculture data that can then be 27 

applied to count the cell numbers for different species in a community without needing 28 

species-specific labels. This idea has since been implemented in several tools that count 29 

human cell types and applied a few times to microbial species, particularly phytoplankton 30 

(27–29). However, applying this concept to bacterial communities is more challenging since 31 

they usually do not have such distinctive shapes and are much smaller. Flow cytometers need 32 

a sufficiently high resolution to distinguish bacterial cells from the background (debris) (20). 33 

In practice, gates are defined by designating areas in scatter plots of FC channels to select 34 

events to keep. However, these scatter plots take only two FC measurements into account 35 

among several (i.e., 14 channels for Accuri BD C6). Gates depend on the sample studied, the 36 

analysis and the flow cytometer and thus usually have to be adjusted across samples and 37 

devices.  38 

Despite these challenges, the composition of in vitro communities (ranging from two to five 39 

bacterial species) was, in several cases, accurately predicted with supervised classification as 40 

assessed by mock communities (30, 31). These publications are accompanied by analysis 41 

pipelines, particularly a Python script (28), referred to as ScriptP, and a MATLAB script 42 

called CellCognize  (31). However, these scripts require programming knowledge and must 43 

be adapted depending on the flow cytometer and gating strategy used.  44 

We, therefore, developed CellScanner, an open-source tool written in Python that is easy to 45 

install and use without programming skills. CellScanner supports both supervised and 46 

unsupervised classification methods. As summarised in Figure 1A, the program processes raw 47 

flow cytometer files of monocultures and then trains predictive models (classifiers) on them. 48 
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These classifiers can then be used to predict the composition of a community (Prediction). 49 

CellScanner can also build in silico communities of known composition from monoculture 50 

files and run classifiers on them to assess prediction accuracy for a species combination of 51 

interest (Tool Analysis). CellScanner can produce an average (aggregated) prediction from the 52 

individual predictions of multiple classifiers (by default 10, see Methods) through a majority 53 

vote (Figure 1B). The user can also set an unknown threshold, representing the percentage of 54 

classifiers that must agree to label an event as a species; otherwise, the event is labelled 55 

unknown (see Methods). 56 

  57 

CellScanner offers different types of gating that are carried out before any calculation and that 58 

include both line gating and a novel automated gating strategy called machine gating, which 59 

applies supervised classification to monoculture data from each species and the medium 60 

(blank).  61 

Table 1 compares CellScanner with different tools that cluster FC data of microbial 62 

communities. From the five tools listed, only CellScanner, CellCognize and ScriptP were 63 

developed for species-specific classification of microbial communities and were thus selected 64 

for comparison. 65 

Results  66 

Optimising CellScanner settings 67 

First, we evaluated the effect of different CellScanner parameters on its performance using 68 

three data sets with 11 microbial species (Data sets 1 and 2, Table 2) that were combined into 69 

30 species pairs in silico. Classifiers are trained on monoculture events that were not used for 70 

community construction. Since the correct species of each event is known, it is possible to 71 

compute the specificity, precision, F1 score, and accuracy of the classification. The 72 

classification with neural networks was significantly (p-values < 1.114e-05 for all pairs) more 73 
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accurate than the other methods, including the (unsupervised) clustering algorithm 74 

(Supplementary Figure 1) and was thus selected for parameter evaluation. 75 

We started by comparing different gating strategies. For this, we included two gating 76 

strategies previously developed to count gut microorganisms in flow cytometry data collected 77 

with Accuri or CytoFLEX. We also added a gating method based on supervised classification, 78 

where classifiers are trained on the co-culture and blank files (containing data for the medium 79 

without inoculation) to distinguish between cells and debris. This gating method, termed 80 

machine gating, is carried out with the same classification method and settings as selected for 81 

species counting. Finally, we included the case without gating as a negative control. As 82 

expected, the absence of gating results in the highest percentage of unknown events (15.7%, 83 

Figure 2A). Because the unknown parameter labelled some background events (i.e., non-cell) 84 

as unknown, the accuracy of prediction increased even without gating. The results obtained 85 

with line gating methods (i.e., for Accuri and Cytoflex) accuracy are not significantly 86 

different. However, line gating is specific to a flow cytometer (Supplementary Table 1) and, 87 

when not adapted, can remove most cell events from a monoculture. Overall, we found that 88 

the highest accuracy is obtained with the new machine learning gating. This result highlights 89 

the importance of blank samples, which are required for machine gating as training data. 90 

Next, we evaluated the impact of the number of runs, i.e., the number of times the prediction 91 

is carried out with a classifier trained on different subsets of the monoculture data. Accuracy 92 

significantly increases with the number of runs at first but then saturates between eight and 93 

twelve runs (Figure 2B). The number of predicted unknown events mainly causes the changes 94 

in accuracy and F1 score in the plateau. All calculations have a 70% unknown threshold. 95 

Therefore, with the number of runs increasing, classifiers needing to agree on a label (>70%) 96 

will increase, but not linearly, since the number of clusters is an integer. Majority vote results 97 

in higher accuracy than calculating the mean accuracy of ten predictions (Figure 2C) even 98 
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without unknown labelling. In addition, the accuracy, F1 score, specificity, and precision 99 

increase with the percentage of runs that must agree on an event (unknown threshold). Thus, 100 

classifying events as unknowns reduces the number of false positives.  101 

Finally, the training set size (i.e. the number of events selected for training per monoculture) 102 

initially increases accuracy but does not further improve it (Figure 2D). Since the size of the 103 

training set also increases the calculation time (especially for neural networks), training set 104 

sizes above 2000 events are not necessary.  105 

Comparison of tool performance for in silico and in vitro communities 106 

Next, we compared CellScanner to CellCognize and ScriptP. We selected FC data from a 107 

collection of datasets, including different cell types (e.g., human cells, bacteria) for a fair, 108 

exhaustive comparison with enough data (e.g., 1064 in-silico communities). The collection of 109 

datasets also includes different cytometers (CytoFLEX, BD Accuri C6, FACSVerse, 110 

NovoCyte) and different cell treatments (e.g., staining). CellScanner supports logistic 111 

regression, random forest, neural network and random guessing (see Methods), ScriptP 112 

implements both random forest and linear discriminant analysis (LDA) and CellCognize is 113 

based on neural networks. For each machine learning method in CellScanner, community 114 

composition was predicted with and without the unknown parameter. Classifiers were 115 

generally trained on data from all available channels (except for the ‘Time’ channel). 116 

From the six datasets selected (i.e., Datasets 1, 3-7), 1045 in silico two-species cocultures 117 

were created with a ratio of 50% for each species. Since in the real world, the species of an 118 

event is not known, we did not compute accuracy but instead assessed how close the predicted 119 

community composition is to the real one. For this, we calculated the Euclidean distance 120 

between the expected and the predicted composition (Figure 3). For random guessing, the 121 

predicted composition was expected to be close to the expected one (50:50). Most of the cells 122 

(90%) were labelled as unknown for random guessing with unknowns, resulting in small final 123 
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cell numbers and thus, large variation. CellCognize has the largest Euclidean distance to the 124 

expectation, which may be due to its embedded gating strategy. Note that for the other 125 

methods using unknowns, the number of unknowns represented less than 10% of the events 126 

for most of the predictions (Supplementary Table 2; i.e., LG:99,3%; RF:95,6%; NN:82,4%). 127 

The best-performing methods, include neural network, random forest with and without 128 

unknowns for CellScanner and random forest for ScriptP. Unless for random forest with 129 

unknown from CellScanner, these methods were not significantly different according to the 130 

paired Wilcoxon test (p-values>0.06). 131 

Next, we evaluated method performance on four different in vitro communities (Datasets 5 132 

and 7), which include three communities of two species and one community of three species, 133 

in different ratios. We compared the Euclidean distances between expected and predicted 134 

compositions for one or all species together, for each community, and for all communities 135 

together (Figure 4A-E). As described in Rubbens et al., 2017(30), the composition of 136 

community 1 is the hardest to predict, and except for CellCognize, all methods performed the 137 

worst on this community. According to the Wilcoxon test, no method was significantly better 138 

than all the others in all communities taken together. As seen previously, CellScanner with 139 

random forest or neural network, with and without unknowns, and ScriptP with random forest 140 

performed best overall (Figure 4F). No classification method systematically outperformed the 141 

others when all predictions of communities are taken into account. 142 

CellScanner applied to a bi-culture of river bacteria 143 

Finally, we applied CellScanner to an unpublished in-house data set of river bacterial species 144 

Brevundimonas sp. (124Z) and Variovorax sp. (1315Z) (Dataset 8). The species were 145 

inoculated in the same amount based on flow cytometry cell count to reach a concentration of 146 

ca. 104 cells/mL and grown together for 72 hours. Samples were analysed with FC at eight 147 

time points. In addition, the growth of each species was also assessed with FC in monoculture 148 
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at the same time points. We predicted the bi-culture composition with CellScanner for each 149 

time point, using all corresponding monoculture samples, merged by species, as training data 150 

for each run (Figure 5). We also compared the performance of different machine learning 151 

methods using CellScanner’s Tool Analysis function. The highest accuracy was obtained with 152 

random forest (Figure 5A); therefore, this method was applied to predict bi-culture 153 

composition. Events were gated with machine learning (Figure 5B). The 3D plot shows 154 

clusters labelled as separate species, and only a small percentage of the events in the blank 155 

clusters are assigned to a species. The predicted ratios suggest that 1315Z quickly dominates 156 

the community (Figure 5D). In addition, the predicted growth curve shows a long lag phase 157 

for 124Z (Figure 5E).  In summary, CellScanner can predict species-specific growth curves 158 

given a time series of bi-culture flow cytometry data. 159 

Discussion  160 

We assessed classification accuracy with in-silico as well as in-vitro communities. Although 161 

the overall community composition in vitro is known, it is not known to which species each 162 

cell belongs, and the accuracy can therefore only be assessed indirectly through the 163 

comparison of the predicted and expected community composition. For a two-species 164 

coculture, the classification can be wrong and still result in a prediction close to the correct 165 

proportion by chance. For this reason, mock communities with a range of ratios and with 166 

more than two species were evaluated (Figure 4D). However, the number of evaluated 167 

communities was small, highlighting the need for more mock community studies. We expect 168 

that increasing the number of species in the community will lower the prediction accuracy 169 

since the probability that different species generate overlapping FC values grows with the 170 

species number.  171 

As expected, prediction accuracy is directly dependent on the dataset used as reference (i.e. 172 

the monoculture, Figure 4). We also observed that there is not a single machine learning 173 
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method that systematically outperforms the others. Logistic regression is fast but only works 174 

well on well-separated communities, whereas neural networks and random forest are slower 175 

but can deal with more challenging clustering tasks. Therefore, with three machine learning 176 

methods implemented, CellScanner enables users to find the optimal method for their dataset 177 

by carrying out an in-silico evaluation with the Tool Analysis function.  178 

The unknown parameter was implemented to deal with prediction uncertainty. Such 179 

uncertainty is caused mainly by similar morphology, which leads to large overlaps in species’ 180 

FC parameters. In the evaluation, this parameter was observed to reduce the number of false 181 

positives, thereby increasing the precision and specificity for each species (Figure 2C). 182 

However, in the two-species in-vitro community evaluation, not assigning unknowns led in 183 

some cases to better performance. The unknown parameter may reduce the accuracy if one 184 

species has many more unknown events than other species. In general, when CellScanner 185 

predicts a large proportion of unknowns, the community may not be well suited for supervised 186 

classification.  187 

To our knowledge, the machine gating method implemented in CellScanner is the first to rely 188 

on supervised classification to gate FC data. Compared to other gating methods in flow 189 

cytometer programs, CellScanner machine gating brings more flexibility since it does not 190 

require defining thresholds. If a gating method relies on the same gate definition for all files, a 191 

shift in the event versus background clusters could lead to the classification of many cells as 192 

debris or vice versa. The machine gating can fail if there is a large amount of background 193 

events compared to cells and if the background in the blanks is not representative of the 194 

background found in mono- and cocultures. Previously, an alternative automated gating 195 

method, tracking cell populations, was described in OpenCyto (32), and another one based on 196 

unsupervised clustering was recently published as FlowGateNIST (24). Both eliminate the 197 
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need for blanks. However, the performance of these methods compared to gating based on 198 

supervised classification remains to be evaluated, especially on microbial data.  199 

Finally, while supervised classification can reach high accuracies on mock communities with 200 

known composition, it is hard to assess its performance on growing communities. In such 201 

communities, cell morphology may differ from the one in monocultures (33) and may even 202 

change over time. However, since the exact composition of these communities is unknown, 203 

the result of FC analysis can only be compared to other counting methods, which have their 204 

own biases. We assessed the species composition for a growing community of selected human 205 

gut bacteria with both 16S rRNA gene sequencing and flow cytometry data analysed with 206 

CellScanner and found that the main trend agreed for both techniques (34). In general, more 207 

such benchmarks are needed for applications to determine whether supervised classification is 208 

a reliable counting method for the community of interest. Unsupervised classification avoids 209 

the need for monocultures and hence the bias that comes from changing morphology. Still, its 210 

accuracy on mock communities was too low for it to be considered a feasible alternative.  211 

CellScanner can assess species classification accuracy on monoculture data in silico and can 212 

quickly predict community composition when given mono- and coculture data. The optional 213 

classification of events as unknown and the machine learning gating are new techniques that 214 

increase prediction accuracy. With its user-friendly GUI (graphical user interface) and 215 

informative output, CellScanner makes supervised classification of FC data available to users 216 

without programming experience.  217 

Materials and methods  218 

CellScanner  219 

Overview 220 

CellScanner is available on command line and via a graphical user interface (GUI). It 221 

wraps fcsparser to read flow cytometry standard (FCS) files and relies on pyqt5 for its GUI. 222 
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The GUI version does not need Python pre-installed on Windows; for other operating 223 

systems, Python and dependencies must be installed first. CellScanner contains functions for 224 

supervised and unsupervised classification, respectively. The latter uses agglomerative 225 

clustering in scikit-learn. The GUI of CellScanner interfaces with a database that contains 226 

previously selected reference (i.e. monoculture) data and provides step-by-step guidance on 227 

tool use. CellScanner offers three supervised classification methods, including random forest, 228 

logistic regression, and neural network (implemented in scikit-learn) and also allows to assign 229 

events randomly to species as a control. CellScanner’s main parameters are the number of 230 

events used for training (7/8) and testing (1/8) (defaulting to 1000 taken together) and the 231 

number of runs (defaulting to ten).  The names of the flow cytometer channels to be used can 232 

be indicated if not all of them are needed; however, the ‘Time’ channel is always removed 233 

from the calculation since it is not linked to cell characteristics. By default, CellScanner does 234 

the following in each run: i) select events randomly from the monoculture FC files with a 235 

slight overlap between data sub-sets (mean overlap below 5%, Supplementary Figure 2), ii) 236 

train a classifier on these events using the selected method and iii) apply the trained classifier 237 

to events in the community FC file. This gives ten classifications per event in the community 238 

FC file; thus, the species of an event is assigned by majority vote. In a case of a tie, the event 239 

is relabelled randomly. The unknown parameter allows CellScanner to tag an event as 240 

unknown if the percentage of the predominant species predicted for an event is lower than or 241 

equal to a user-defined threshold (unknown threshold). For instance, if the user keeps the 242 

default of 70% as threshold and only seven out of ten runs agree on the same species, then the 243 

event is labelled as unknown. The agreement between runs varies depending on the 244 

classification method and data set, but in most cases, nine classifiers agree on the prediction 245 

(Supplementary Figures 3).  246 

Gating methods 247 
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Two gating methods have been implemented in CellScanner. The first is a set of equations 248 

implementing the line gating described in Vandeputte et al. (2017)(35) for the BD Accuri C6 249 

cytometer or the Cytoflex cytometer, which distinguishes single cells from two aggregated 250 

cells (doublets). This discrimination relies on a comparison of the FSC-A and FSC-H 251 

channels, which should be proportional. The Accuri line gating is described as follow:  252 

𝐹𝐿3𝐴 ≤ 0 𝑜𝑟 𝐹𝐿1𝐴 ≤ 0 253 

𝐹𝐿3𝐴 > 0,0241 × 𝐹𝐿1𝐴1.0996 254 

𝐹𝑆𝐶𝐴 > 100000 & 𝑆𝑆𝐶𝐴 > 10000 255 

𝑙𝑜𝑔(𝐹𝑆𝐶𝐴) > 𝑙𝑜𝑔(𝐹𝑆𝐶𝐻) + 0,5 256 

𝑙𝑜𝑔(𝐹𝑆𝐶𝐴) > 𝑙𝑜𝑔(𝐹𝑆𝐶𝐻) − 0,5 257 

For the CytoFLEX cytometer, line gating follows this set of equations: 258 

𝐹𝐿3𝐴 ≤ 0 𝑜𝑟 𝐹𝐿1𝐴 ≤ 0 259 

𝑙𝑜𝑔(𝐹𝐿3𝐴) > 1,5 × 𝑙𝑜𝑔(𝐹𝐿1𝐴) − 2,8 260 

𝑙𝑜𝑔(𝐹𝐿2𝐴) > 2,5 ∗ 𝑙𝑜𝑔(𝐹𝐿1𝐴) − 9 261 

𝑙𝑜𝑔(𝐹𝑆𝐶𝐴) > 𝑙𝑜𝑔(𝐹𝑆𝐶𝐻) + 0,6 262 

log(𝐹𝑆𝐶𝐴) > log(𝐹𝑆𝐶𝐻) − 0,6 𝑙𝑜𝑔(𝐹𝑆𝐶𝐴) > 𝑙𝑜𝑔(𝐹𝑆𝐶𝐻) − 0,6 263 

Since the brand and the configuration of a cytometer affect the gating, we developed a 264 

machine learning gating that avoids arbitrary equations. For this, CellScanner compares FC 265 

data from the blank files (i.e. medium without cells) to mono- or coculture data. The tool 266 

trains six classifiers from the chosen method with 1000 events from a blank FC file and 1000 267 

events from a species FC file. Using majority vote and an unknown threshold >70% for 268 

monocultures of the same species, the program will tag most of the overlapping non-cell 269 
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events between blank and monocultures FC files as either blank (i.e., background noise, 270 

medium debris) or unknown, and remove them. If “machine” is selected as gating technique, 271 

the user must add blank file names and tag these as ‘blank’. Without indicated blank data, the 272 

program will not perform any gating.    273 

Supervised and unsupervised classification 274 

The logistic regression classifier uses the ‘lbfgs’ solver and L2 regularisation, which reduces 275 

the weights of predictors with a penalty term. In the multiclass case, the function 276 

automatically selects the ‘multinomial’ option that minimises the multinomial loss and fits 277 

across the entire probability distribution. 278 

The random forest relies on 200 estimators maximum and the Gini impurity as a criterion to 279 

measure the quality of a split.   280 

The neural network classifier uses 200 layers, a rectified linear unit function to activate the 281 

hidden layer and the ‘lbfgs’ solver. For each classifier, the parameters were optimised on a set 282 

of data and default values were set accordingly, which are only modifiable in the command-283 

line version of CellScanner. The machine gating function uses the supervised classification 284 

method specified by the user for the prediction and associated parameter(s).  285 

In random guessing, an event is randomly assigned to one of the species names indicated by 286 

the user. 287 

The only unsupervised classification method available in CellScanner is agglomerative 288 

clustering implemented in the scikit learn package. The natural logarithm of ten is taken for 289 

every feature in the FC data. All samples with null or NaN values are discarded before 290 

applying the logarithm. To help the user labelling the clusters with their corresponding 291 

species, CellScanner takes monoculture data for each species. A distance is calculated 292 
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between the clusters and the monoculture data, and each cluster is labelled with the species of 293 

the closest monoculture.  294 

Output 295 

CellScanner generates the same output on command line as with the GUI. A directory named 296 

with the date and time of the start of the analysis is created in the ‘Results’ directory located 297 

in the installed program directory. The user can also choose where the output is saved on 298 

command line. For each step, including the prediction and the gating, if desired, the program 299 

produces excel tables with statistics, species counts, as well as 3D graphs that can be 300 

manipulated by the user to find the best angle of view and that, compare the expected to the 301 

predicted labelling if applicable. Settings are likewise saved. 302 

For the Tool Analysis output, the program calculates statistics based on the true positives 303 

(TP), the false positives (FP), the false negatives (FN), the number of species in the 304 

community (n), the total number of events and the number of unknown (Nb tot event; Nb 305 

unknown). TP, FP and FN are specific to a species in the community (i). The calculation also 306 

considers the false negatives of a species i attributed to the unknown category (𝐹𝑁𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑖 ) 307 

and the weight defined by the number of true instances per species (w).  308 

Accuracy is defined as      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖𝑛

𝑖

𝑁𝑏 𝑡𝑜𝑡 𝑒𝑣𝑒𝑛𝑡
 309 

In the presence of unknowns, accuracy is defined as  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖𝑛

𝑖

𝑁𝑏 𝑡𝑜𝑡 𝑒𝑣𝑒𝑛𝑡−𝑁𝑏 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
 310 

F1-score is defined by the scikit-learn package with the ‘weighted’ average parameter 311 

resulting in: 𝐹1𝑠𝑐𝑜𝑟𝑒 =
∑ (𝑤𝑖 .  

2𝑇𝑃𝑖

2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖)𝑛
𝑖

∑ 𝑤𝑖𝑛
𝑖

 312 

With unknown events, the F1 score is defined as      𝐹1𝑠𝑐𝑜𝑟𝑒 =
∑ (  

2𝑇𝑃𝑖

2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖−𝐹𝑁𝑢𝑛𝑘𝑛𝑜𝑤𝑛
𝑖 )𝑛

𝑖

𝑛
 313 
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The precision per community is defined as  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
𝑛
𝑖

𝑛
314 

The sensitivity per community is defined as  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
∑

𝑇𝑃𝑖

𝑃𝑖
𝑛
𝑖

𝑛
  315 

Datasets  316 

Data used for the evaluation of CellScanner settings 317 

Four datasets, summarised in Table 2, were used to evaluate CellScanner settings. Each of 318 

these data sets contains blank data to perform machine gating. Dataset 1 (33) includes three 319 

microbial species from soil samples combined into three in silico communities. Dataset 2 (34) 320 

contains monoculture data collected with three different flow cytometers. The first group has 321 

seven species in 21 combinations and two blank files consistently used as blank references. 322 

The second group contains three monocultures, including Escherichia coli labelled with 323 

mCherry, of which three combinations were assessed. One file only was used as blank for 324 

every prediction. The last group contains three monocultures and two blank files. In total, 30 325 

in silico combinations were obtained.  326 

Data used for tool comparison 327 

In silico communities 328 

Six datasets, including one divided into three groups, composed of 111 monocultures and 329 

summarised in Table 3, were obtained from the FlowRepository (34) database and the 330 

literature to create 1045 in silico two-species cocultures.  Dataset 1 (36) contains three 331 

microbial species, each divided into four time-point subgroups, from which 66 combinations 332 

were created. Dataset 3 (38) includes two microbial species from drinking water samples in 333 

six different conditions, including different time points and staining methods. From these, 66 334 

in silico bi-cultures were created. Dataset 4 (39) contains eight human cell line monocultures, 335 

for which two were divided into three sub-groups according to the staining conditions and 336 
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channels described in their data file. Sub-groups were analysed with the same channels, 337 

ignoring the extra channels. From these, 68 in silico bi-cultures were created. Dataset 5 (30) 338 

contains 20 bacterial monocultures in two replicates from which 190 in silico communities 339 

were created. Dataset 6 (40) includes the same monocultures as Dataset 5 but analysed with a 340 

different flow cytometer. Dataset 7 (31) contains the first 31 monocultures from the 341 

filtered_standards_32.mat file, including beads, eukaryotic and prokaryotic species from 342 

water samples, already gated, and the logarithm (log 10) taken.  343 

In vitro communities  344 

Two datasets with known community composition were selected. Their composition is 345 

summarised in Table 4.  Dataset 5 (30) contains three communities of two bacterial species in 346 

13 different ratios. Dataset 7 includes the fourth community composed of three bacterial 347 

species in four ratios.  348 

Study case  349 

In-house dataset 8 comprises freshwater bacterial species Brevundimonas sp. (124Z) and 350 

Variovorax sp. (1315Z) grown in monoculture and bi-culture in R2 broth (R2B) medium at 351 

20℃. Species were first grown on R2 agar separately and then transferred to R2B medium 352 

and incubated for 48h. Cell concentration in pre-cultures was estimated with flow cytometry 353 

and cells were diluted to ca. 104 cells/mL for inoculation in 1L Schott bottles. Species were 354 

equally mixed for the co-culture. Samples were taken at nine time points for monocultures 355 

and eight for bi-cultures in three biological replicates (see Table 5). 356 

Evaluation  357 

CellScanner settings 358 

Datasets 1 and 2 were used to explore CellScanner parameters. By default, machine gating 359 

was performed before selecting a thousand events per species, using the Tool Analysis 360 
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function. All files used to create the in-silico community differed if used for the training. 361 

CellScanner was run with unknowns enabled, and neural networks were selected as the 362 

supervised classification method.   363 

Tool comparison 364 

All three machine learning methods from CellScanner and random guessing (for in silico 365 

communities only), ScriptP (30) with Linear Discriminant Analysis (LDA) and random forest, 366 

as well as CellCognize (29) with neural network, were applied to the same datasets to predict 367 

in silico and in vitro communities. The two latter scripts were modified to be comparable with 368 

CellScanner as follows: Script P was modified to handle two or three species and not to take 369 

into account expected statistical values. CellCognize was modified to create classifiers from 370 

two or three species and to accept diverse channel names. For each prediction, all methods 371 

build two or three species classifiers that were trained on 5000 events per species. The 372 

training sets were selected randomly for each method from the same monoculture files and 373 

thus overlap but are not composed of the same events. None of the datasets underwent any 374 

transformation before being fed to the classification methods.  375 

In silico communities 376 

Each of 1045 in silico bi-cultures obtained from datasets 1 and 3-7 was created with 1000 377 

events per species, with a species ratio of 50:50. The in-silico communities were created from 378 

the same files for each tool. Still, each event was randomly selected using the python 379 

random.randint  function. The files used for the in-silico community are technical replicates 380 

from the data file used for the training when available or monoculture from a close time point 381 

when time series were available (e.g., Table 3, dataset 1). For dataset 7 only, the same files 382 

were used for the training and the in-silico community, which may have resulted in 383 

overlapping data. 384 

For each tool, the number of events predicted for species A and B was converted into ratios. 385 
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Unknown and gated events (labelled ‘blank’) were removed prior to calculation. Euclidean 386 

distances between the expected and predicted ratios were calculated for each method. A two-387 

sided Wilcoxon paired test was carried out on the squared distances between the expected and 388 

predicted ratios of one of the two species using R version 3.5.3. 389 

In vitro communities 390 

The in vitro mock communities are represented in datasets 5 and 7. In dataset 7, Escherichia 391 

coli and Pseudomonas veronii were divided into two subpopulations, which were then 392 

classified into five groups with Acinobacter johnsonii. To calculate the ratios, the number of 393 

events was summed by species. Ratios were calculated for two or three species, and the 394 

Euclidean distances were calculated for each community. For the bi-cultures, only the squared 395 

difference of one species from the expected ratio was used in the Wilcoxon test, and each 396 

species was considered for the three-species community. 397 

Study case  398 

CellScanner was run with its three machine learning methods, with the unknown threshold set 399 

to >70% and machine learning gating.  The program was trained on dataset 8 with 2000 400 

events for each species, which were randomly selected from the pooled nine monoculture 401 

files. In fact, each of the ten runs used nine different time points per species as references, 402 

then simultaneously carried out the prediction for all communities from 0 h to 72 h.  403 

Data availability 404 

CellScanner is available at http://msysbiology.com/cellscanner.html and cloneable from 405 

GitHub at https://github.com/Clem-Jos/CellScanner. 406 

The modified ScriptP and the modified CellCognize script, complete details on the datasets 407 

used, and result tables and all p-values are available at: https://github.com/Clem-408 

Jos/CellScanner/tree/main/tool_comparison.   409 

http://msysbiology.com/cellscanner.html
https://github.com/Clem-Jos/CellScanner
https://github.com/Clem-Jos/CellScanner/tree/main/tool_comparison
https://github.com/Clem-Jos/CellScanner/tree/main/tool_comparison
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Data sets 2 and 8 are available on flowrepository.org upon acceptance of this manuscript. A 410 

temporary link for reviewers can be found below. To open the link, please paste it into a 411 

browser. 412 

Dataset 2 FR-FCM-Z3TX: 413 

https://flowrepository.org/id/RvFrQbe9nsqqyvGCZfsOjrPv8ksKSZWkUSWvHPZ5BdVxz64414 

x5YsqUKRBO3LMmYXX  415 

FR-FCM-Z4RP: 416 

https://flowrepository.org/id/RvFrAhvGtPhjjmy5ryMYG6hr14KuzZ2b4p2aovfft58FIVNz8Q417 

GxNk0oI5GLlThd  418 

FR-FCM-Z3TM: 419 

https://flowrepository.org/id/RvFrzKykLCrofnoeg0fomWCf69zX2A6ntRFzRDX8qE9zyKY1420 

CKLzPD33tzxekhjI  421 

FR-FCM-Z3U2: 422 

https://flowrepository.org/id/RvFreaUevyBIyxS8k1pW6elbE4YfQMUj6SqCwbM3uXEoKks423 

JiZOLjuucpkKjUkfs  424 

Dataset 8 FR-FCM-Z4RJ:  425 

https://flowrepository.org/id/RvFrCGjzTqG8GX7q7eEqdyWfa7p3Bw8Nesi3orY756UNvuda426 

PB9sdmCfSYv6Ia0B  427 
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Tables 539 

Table 1: Overview of selected classification tools for microbial FC data. LR (logistic regression), RF (random forest), NN 540 

(neural network), AC (agglomerative clustering), MGM (Multivariate Gaussian Mixture), LDA (linear discriminant analysis). 541 

CellScanner does not have prerequisites on Windows because it uses an installer that takes care of the dependencies. 542 

 543 

Table 2: Summary of datasets used to assemble in silico communities for CellScanner setting evaluation. For each 544 

prediction, one monoculture file was used for the training as a reference and another to build the in-silico community. Blank 545 

files were used as references for gating for each prediction in a group.   546 

 547 

  548 
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Table 3: Summary of data sets used to assemble in silico communities for tool comparison. For each prediction, one 549 

monoculture file was used for the training as a reference and another as part of the in-silico community, unless for the dataset 550 

seven for which only one file was available per species. Files used in prediction can differ from reference files by time point or 551 

technical replicate. A species subgroup is defined by flow cytometer parameters or by staining methods for species sub-552 

populations. X2 and X3 indicate the number of sub-populations considered in the analysis for the CellCognize dataset.                                 553 

 554 

Link group

E111-1 37° t1 37° t2
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E111-3 37° t5 37° t6

E111-4 37° t7 37° t8

B41-1 37° t1 37° t2
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Table 4: Summary of data sets used as in vitro communities for tool comparison. For each prediction, monoculture files 555 

were used for the training as reference, and the in vitro community files were used for predictions.556 

 557 

 Table 5: Summary of the datasets used as a study case to predict the composition of a two-species coculture. For each 558 

prediction, monoculture files were used for the training as reference, and the in vitro community files were used for predictions. 559 

All blank files were used for the gating.560 

 561 
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Figures 563 

 564 

Figure 1: Overview of CellScanner. A: CellScanner performs ten runs by default. In each run, events are randomly selected 565 

from monoculture flow cytometry (FC) files and used to train a classifier. The classifier is then applied to predict the 566 

composition of an in-vitro (prediction) or in silico (tool analysis) community FC file. B: During each run, every event in the 567 

community is classified as a species. The final species assignment is decided by majority vote across runs. In addition, 568 

CellScanner allows to label events as unknown when fewer than the specified percentage of runs agree on the species 569 

(unknown parameter).  570 
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 571 

Figure 2: Accuracy of prediction is dependent on selected parameters. Predictions were performed with different 572 

parameters for 30 species pairs combined in silico. A: Distribution of prediction accuracy for each community with three 573 

different methods of gating and no gating. Significance of differences was assessed with a two-sided Wilcoxon paired test (p-574 

value < 0.05 shown). B: Prediction accuracy with the number of classification runs from one to 20. Wilcoxon paired test p-575 

values are provided in CellScanner’s GitHub directory. C: Prediction accuracy, specificity and precision with the unknown 576 

threshold parameter ranging from 0 to 90% for ten runs. In ‘Mean’, the F1, precision, specificity and accuracy values are 577 

computed as the mean over the ten classification runs without majority vote. D: Prediction accuracy obtained with a training 578 

set from 50 to 5000 events per species. For C and D, all data points are significantly different from preceding points (p-value 579 

< 0.05 for two-sided Wilcoxon paired test) unless indicated otherwise. A-D: Distributions are depicted as violin plots. 580 



 

29 

 

 581 

Figure 3: Comparison of classification methods in silico including CellScanner (CS) Script P (SP) and CellCognize. 582 

The classification methods include logistic regression (LR), random forest (RF), neural network (NN) and linear 583 

discriminant analysis (LDA), with (Y) or without (N) enabling unknowns. CellScanner NN Y or Y in blue uses a different 584 

implementation than CellCognize NN in green. Euclidean distances between the expected (50:50) and predicted ratios are 585 

shown for 1045 in silico species pairs. P-values across methods per community are calculated with a two-sided Wilcoxon 586 

paired test and provided in CellScanner’s GitHub directory. All values that are not annotated are significant with a p-value 587 

<0,05. Distributions are depicted as violin plots. 588 

 589 
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 590 

Figure 4: Comparison of classification methods in vitro, including CellScanner (CS) Script P (SP) and CellCognize 591 

and summary rank table: A-E: Euclidean distances between the expected community compositions in vitro and the 592 

predicted compositions for three combinations of two species in 13 different ratios (A-C), one combination of three species in 593 

four different ratios (D), and for all combinations together (E). P-values across methods per community are calculated with a 594 

two-sided Wilcoxon paired test and summarised in CellScanner’s GitHub directory. F: Table ranking methods for the 1064 595 

predictions in silico, the in vitro communities 1, 2, 3 and 4 and all together (all). Distributions are depicted as violin plots. 596 

 597 

 598 
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 599 

Figure 5: In silico analysis and prediction for in vitro samples in a time series with unknown ratios of the bi-culture of 600 

124Z and 1315Z. A: Confusion matrix for the prediction step of the in-silico community (CellScanner output). B: Gating 601 

performed on reference files during the “Tool Analysis” of the in-silico community (CellScanner output) for 1) 124Z and 2) 602 

1315Z. C: 3D plot for the prediction at time point 22h for the first replicate. D: Predicted ratio for time series after removal 603 

of background and unknown cells. E: Predicted cell numbers for the two species.  604 

  605 
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Supplementary Tables 606 

 607 

Supplementary Table 1: Accuracy and F1 score for different gating methods, grouped by cytometer. Accuracy on top, 608 

F1 in the middle and Unknown part at the bottom for four cytometers and four gating methods. The values in bold showcase 609 

where the gating is considered adapted for the dataset, the other cases are considered too stringent (i.e. less than 100 events 610 

kept for at least one species) event though the accuracy and F1 score appears good.  611 

 612 

 613 

Supplementary Table 2: Prediction with a specific percentage of unknowns for all in silico and in vitro predictions. 614 

Columns > x%: percentage or predictions with a percentage of unknown predicted events higher than x %. The mean 615 

percentage of unknown events is calculated as the mean of all percentages of unknown events for all predictions. For in vitro 616 

communities, the predictions with more than 20% of events labelled unknown are from the coculture 1 of dataset 5, which 617 

was the most difficult to predict.  618 

 619 

None
Line gating for 

BD Accuri C6

Line gating for 

BD CytoFLEX
Machine gating

CD Accuri C6(1) 0,98 0,95 0,98 1,00

CD Accuri C6(2) 0,97 0,98 0,94 0,98

CytoFLEX(1) 0,90 0,91 0,95 0,98

CytoFLEX(2) 0,94 0,99 0,99 0,99

CD Accuri C6(1) 0,98 0,90 0,87 1,00

CD Accuri C6(2) 0,97 0,98 0,81 0,98

CytoFLEX(1) 0,89 0,88 0,95 0,98

CytoFLEX(2) 0,94 0,99 0,99 0,99

CD Accuri C6(1) 0,10 0,09 0,03 0,01

CD Accuri C6(2) 0,08 0,07 0,07 0,06

CytoFLEX(1) 0,52 0,17 0,13 0,09

CytoFLEX(2) 0,42 0,10 0,12 0,14

F1

Accuracy

Unknown
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Supplementary Figures 620 

 621 

Supplementary Figure 1: Prediction accuracy of the different classification methods of CellScanner. Accuracy 622 

percentages are calculated for the 30 in silico coculture predictions of the CellScanner parameter analysis. The clustering 623 

method uses an agglomerative clustering function to cluster cells and then attributes each cluster to the closest species by 624 

comparing the distance of each cluster from each reference file furnished by the user. For a two-species community, 625 

CellScanner chose the number of clusters from one to three by comparing the distance between clusters in the three 626 

conditions. The tool selects the higher number of clusters with the larger distance. Three clusters can include the two 627 

expected species plus blank or contamination, and one unique cluster mimics the disappearance of one species. Here only the 628 

clustering is compared to the classification methods. If the program failed the species attribution to a cluster, the user 629 

manually labelled the cluster and modified the accuracy (only for initial accuracy under 40%). All methods give significantly 630 

different results according to the Wilcoxon test (p-value < 0.05). 631 

 632 
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 633 

Supplementary Figure 2: Mean percentage of overlapping training data between two runs for the 30 predictions of 634 

CellScanner parameter analysis. Dataset 1 and 2 from CellScanner parameter analysis were used to predict 30 in silico 635 

pairs where the training/testing set was extracted for comparison. Every dot is the mean of the number of events from the 636 

training set overlapping between two runs, calculated for the 45 pairs combined from the ten runs. The mean is calculated 637 

for each of the two species. * significantly different result according to Wilcoxon test (p-value < 0.05). 638 

 639 
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 640 

Supplementary Figure 3: Agreement of votes between runs. A) Mean agreement of vote per species for 30 predictions. 641 

Each dot is the mean of the maximum number of runs agreeing on every event in a prediction. Vote extracted from prediction 642 

of   dataset 1 and 2 for CellScanner parameter setting analysis. B) Example of agreement across runs. Every dot represents 643 

the number of runs agreeing on an event for the in-silico community of Bacteroides thetaiotaomicron and Bacteroides uniformis 644 

of the same dataset. Identified result are significantly different according to Wilcoxon test (p-value < 0.05). 645 

 646 

 647 
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