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Abstract

Genes can be associated in numerous ways, €.g. by co-expression in micro-arrays, co-regulation in
operons and regulons or co-localization on the genome. Association of genes often indicates that they
contribute to a common biological function, such as a pathway. The aim of this thesis is to predict
metabolic pathways from associated enzyme-coding genes. The prediction approach developed in this
work consists of two steps: First, the reactions are obtained that are carried out by the enzymes coded
by the genes. Second, the gaps between these seed reactions are filled with intermediate compounds
and reactions. In order to select these intermediates, metabolic data is needed. This work made use of
metabolic data collected from the two major metabolic databases, KEGG and MetaCyc. The metabolic
data is represented as a network (or graph) consisting of reaction nodes and compound nodes. Interme-
diate compounds and reactions are then predicted by connecting the seed reactions obtained from the
query genes in this metabolic network using a graph algorithm.

In large metabolic networks, there are numerous ways to connect the seed reactions. The main
problem of the graph-based prediction approach is to differentiate biochemically valid connections
from others. Metabolic networks contain hub compounds, which are involved in a large number of
reactions, such as ATP, NADPH, H,O or CO,. When a graph algorithm traverses the metabolic network
via these hub compounds, the resulting metabolic pathway is often biochemically invalid.

In the first step of the thesis, an already existing approach to predict pathways from two seeds was
improved. In the previous approach, the metabolic network was weighted to penalize hub compounds
and an extensive evaluation was performed, which showed that the weighted network yielded higher
prediction accuracies than either a raw or filtered network (where hub compounds are removed). In
the improved approach, hub compounds are avoided using reaction-specific side/main compound an-
notations from KEGG RPAIR. As an evaluation showed, this approach in combination with weights
increases prediction accuracy with respect to the weighted, filtered and raw network.

In the second step of the thesis, path finding between two seeds was extended to pathway prediction
given multiple seeds. Several multiple-seed pathay prediction approaches were evaluated, namely three
Steiner tree solving heuristics and a random-walk based algorithm called kWalks. The evaluation
showed that a combination of kWalks with a Steiner tree heuristic applied to a weighted graph yielded
the highest prediction accuracy.

Finally, the best perfoming algorithm was applied to a microarray data set, which measured gene
expression in S. cerevisiae cells growing on 21 different compounds as sole nitrogen source. For 20
nitrogen sources, gene groups were obtained that were significantly over-expressed or suppressed with
respect to urea as reference nitrogen source. For each of these 40 gene groups, a metabolic pathway
was predicted that represents the part of metabolism up- or down-regulated in the presence of the
investigated nitrogen source.

The graph-based prediction of pathways is not restricted to metabolic networks. It may be applied to
any biological network and to any data set yielding groups of associated genes, enzymes or compounds.
Thus, multiple-end pathway prediction can serve to interpret various high-throughput data sets.
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Abbreviations

AL Average path length

ADP Adenosine Diphosphate

ATP Adenosine Triphosphate

EC Enzyme Commission

E. coli Escherichia coli

EM Elementary Mode

FN False Negative

FP False Positive

GABA Gamma-aminobutyric acid

GML Graph Modelling Language

HQL Hibernate Query Language

IQR Interquartile Range

KEGG Kyoto Encyclopedia of Genes and Genomes
NAD Nicotinamide Adenine Dinucleotide

NADP Nicotinamide Adenine Dinucleotide Phosphate
NCR Nitrogen Catabolite Repression

NeAT Network Analysis Tools

ORF Open Reading Frame

OWL Web Ontology Language

PPV Positive Predictive Value

REA Recursive Enumeration Algorithm

S. cerevisiae Saccharomyces cerevisiae

SGD Saccharomyces Genome Database

SMILES Simplified Molecular Input Line Entry System
TCA cycle Tricarboxylic Acid cycle, also known as Krebs or citric acid cycle

TP True Positive
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1 Introduction

1.1 Motivation

High-throughput experiments such as microarrays allow to measure gene expression in differ-
ent conditions at a genomic scale. Interpretation of these data is however a challenging task.
One approach commonly applied to the interpretation of microarray data has been termed
"Guilt by association" [137]. It states that co-expressed genes (genes whose expression values
are either increased simultaneously or decreased simultaneously with respect to a reference)
are likely to contribute to a common biological function such as a pathway.

Genes may not only be "guilty of association" by co-expression, but also by co-regulation in
operons and regulons, co-occurrence in phylogeny, co-localization in the genome or in other
ways. In all these cases, it is of interest to identify the biological module or pathway in which
the "guilty" genes are involved.

In order to identify pathways from associated genes, many software tools simply map the
genes on a set of pre-defined pathways [34, 159, 123, 84, 64, 1]. An example for pathway
mapping is given in Figure 1.1.

This mapping approach has several shortcomings:

It is only applicable to organisms with correspondences to known pathways.

It does not deal well with genes mapping to several pathways.

It fails to find variants of pre-defined pathways.

It is unable to uncover novel pathways from known components (e.g. known reactions,
compounds or protein interactions).

A major reason for these drawbacks is the inability of the mapping approaches to take the
interconnection of biological pathways into account. The accumulation of more and more
biological data triggered recently a shift in data representation from modules and pathways
towards whole networks. Networks have the advantage to account for the interconnection of
pathways and to enable a series of interesting analyses. However, predicting relevant biologi-
cal pathways from networks instead of pre-defined pathways poses a challenge.

1.2 Goal of the thesis

The goal of this thesis is to predict biochemically relevant metabolic pathways from metabolic
networks and groups of associated enzyme-coding genes. The metabolic network is assembled
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Figure 1.1: Illustration of pathway mapping. The query genes ilvD, ilvE, ilvM and ilvA (all members
of the same operon in E. coli) were mapped to KEGG pathway maps [86], using the KEGG tool:
"Color Objects in KEGG Pathways". The genes occur in six pathway maps (not counting the overview
map). A selection of two maps is shown, each of which contains more than one query gene. Reactions
associated to query genes are colored in blue, E. coli specific reactions are colored in green.




from a metabolic database, whereas the genes can come from a variety of data sources (co-
expression, co-regulation, co-occurrence in phylogenetic profiles etc.). From the enzyme-
coding genes, reactions are obtained, which serve as seeds for pathway prediction. Figure 1.2
depicts a flow chart of metabolic pathway prediction.

The first step to reach this goal consisted in the development of a new algorithm and the
adaptation of existing algorithms to the prediction of pathways from metabolic networks. In
a second step, the prediction accuracy of these algorithms was evaluated on a large set of an-
notated metabolic pathways. During this evaluation, the impact of various parameters (such
as network properties or the integration of main/side compound annotations from the RPAIR
database [96]) on the accuracy was assessed. Finally, the best-performing algorithm was ap-
plied to extract pathways from co-expressed gene groups obtained from a microarray data
set.

1.3 Biological background: Metabolism

The classical biochemistry textbook [13] defines metabolism as follows: "Metabolism is es-
sentially a linked series of chemical reactions that begins with a particular molecule and con-
verts it into some other molecule or molecules in a carefully defined fashion."

Chemical reactions involved in metabolism will from now on be termed metabolic reactions
or reactions. They act on molecules, which will be termed compounds throughout this work.

Metabolic reactions can be subdivided into two basic categories: Anabolic reactions syn-
thesize molecules from smaller building blocks whilst consuming energy, whereas catabolic
reactions break down large molecules to generate energy and building blocks required by
anabolic reactions.

Another classification of metabolism is based on the importance of compounds for the sur-
vival of an organism. Primary compounds, such as glucose 6-phosphate or ATP, are involved
in the maintenance of the basic functions of life (growth, development, reproduction). Sec-
ondary compounds are not required for these basic tasks, but are needed in specific conditions,
such as defense against parasites (e.g. antibiotics produced by fungi).

As will be discussed in detail in section 1.5, metabolism can be represented as a net-
work. This representation allows to define core and peripheral metabolism. This classification
loosely corresponds to the traditional classification into primary and secondary compounds
and will be presented in section 1.6.4.

A typical cell is composed of thousands of compounds and reactions. For instance EcoCyc
(version 13.1) [90] lists 1,415 enzymes, 1,784 reactions and 1,753 compounds for Escherichia
coli.

In the following, the major concepts of metabolism will be discussed in more detail.

1.3.1 Compounds

The chemical structure of a compound can be represented in a variety of ways. Most important
are the sum formula, which lists the numbers of different atoms contained in the compound
and the structural formula, which shows how the atoms are arranged. For bioinformatics, the
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Figure 1.2: Flow chart of metabolic pathway prediction. Genes can be associated in several ways, e.g.
by co-expression, co-regulation or co-localization. The first step is to obtain a set of reactions from
the associated, enzyme-coding genes. These reactions are then submitted to the metabolic pathway
prediction tool, which takes two inputs: 1) the set of seed reactions or compounds and 2) a metabolic
network constructed from a publicly available metabolic database, such as KEGG [86]. A metabolic
pathway is predicted by connecting the seeds in the metabolic network. Image sources: global KEGG
network and KEGG symbol were obtained from the KEGG database homepage [86], the MetaCyc
symbol from the MetaCyc home page [22]. The operon image was obtained from RegulonDB [61]
and the genome image from the Comprehensive Microbial Resources [36]. The microarray image was
taken from the Liverpool Microarray facility homepage (with kind permission from the University of

Liverpool).
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representation of a compound by a string of characters is also relevant. One such string rep-
resentation is the SMILES notation [168]. Figure 1.3 illustrates these different representations
on the example of D-glucose.

Different representations of compound structure

D-glucose
Structural formula: O OH
=Y
HO" [ “OH
OH
Co0031
Sum formula: CgH120¢
SMILES: C(CIC(C(C(C(01)0)0)0)0)O

Figure 1.3: The chemical structure, the sum formula and the SMILES representation of the compound
D-glucose are shown. The structure image was taken from KEGG [86].

Compounds take on different roles in metabolism. For instance, many authors distinguish
between main and side compounds of a pathway. Main compounds "carry" a major part of the
carbon atoms through the reactions of the pathway. They form the "backbone" of pathways,
as Karp put it [88] and are also called intermediate compounds. Typical side compounds act
as donors/acceptors of energy or electrons, such as ATP/ADP and NAD(P)"/NAD(P)H or as
donors/acceptors of functional groups such as tetrahydrofolic acid. The distinction between
main and side compounds poses problems discussed in section 1.7.2. In addition, other atom
types than carbon may be relevant in a pathway, e.g. the sulfur incorporation pathway contains
intermediates such as sulfide that do not contain carbon.

Side compounds such as ATP/ADP or NAD(P)"/NAD(P)H and small inorganic compounds
such as H>O or CO, are involved in many reactions and are therefore called ubiquitous or hub
compounds. As will be discussed in section 1.10.3, appropriate treatment of hub compounds
is necessary to predict metabolic pathways accurately.

In this thesis, only small molecules and their reactions are taken into account. Polymers
such as DNA, proteins or RNA and their reactions are neglected.



1.3.2 Reactions

Reactions convert a set of input compounds called substrates into a set of products. Substrates
and products together are also named reactants. Figure 1.4 depicts an example reaction with
two substrates and two products.

Q
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Figure 1.4: Example of a metabolic reaction (KEGG identifier R00299). The substrates D-glucose and
ATP are converted into the products D-glucose-6-phosphate and ADP. The reaction is catalyzed by the
enzyme glucokinase, which has the EC number 2.7.1.2 assigned to it. The direction of this reaction
is not specified by this illustration. However, in physiological conditions, this reaction is irreversible,
since it consumes energy by hydrolyzing ATP. The compound structure images were taken from KEGG
[86].

A reaction can proceed in two directions. Consider for example reaction A + B < C. It
can proceed from A and B towards C (forward direction) or from C towards A and B (reverse
direction). In this thesis, the following notation is adobted: If the arrow in a reaction equation
points from left to right, compounds on the left-hand side are considered as substrates and
compounds on the right-hand side as products. If it points from right to left, right-hand side
compounds are substrates and left-hand side compounds are products.

The direction of a reaction depends on its change in Gibbs free energy AG. If AG = 0,
the reaction is at equilibrium and neither the forward nor the reverse direction is preferred.
If AG > 0, the forward direction is unfavorable and the reaction cannot occur spontaneously
(endergonic reactions). If AG < 0, the forward direction is preferred and the reaction may
occur spontaneously (exergonic reactions).

AG 1is a function of the concentrations of the reactants, the temperature and the standard

free energy change AGy of the reaction: AG = AGo + RT[nQ, with the reaction quotient
0= [product,°...[product?)

" [substrate)...[substrateb))
of the reaction and a,b, ¢ and d are stoichiometric coefficients of the substrates and products.

The standard free energy change is defined as AGy = —RT [nK,,, with the equilibrium constant
Keq = Qequitibrium- Qequilibrium Tefers to the reactant concentrations in equilibrium. The stan-
dard conditions are defined as follows: one molar concentration of reactants, one atmosphere

, where n is the number of products and m the number of substrates



pressure and for metabolic reactions pH 7.0.

Reactions that are far from equilibrium ( AG # 0) are also termed irreversible reactions,
because the preference for one reaction direction is so great that the other one can be ne-
glected. Since AG depends on reactant concentrations and the temperature, a reaction that
is physiological irreversible in one organism may be reversible in another one. For instance,
the temperature in thermophilic organisms is different from the temperature in mesophilic
organisms, thus their AG values also differ, even if reactant concentrations are the same.

These considerations affect the representation of reactions in metabolic networks compris-
ing several organisms.

1.3.3 Enzymes

Enzymes are biomolecules that catalyze reactions. Most enzymes are proteins, but RNA may
also act as an enzyme (ribozyme). Importantly, an enzyme does not change the equilibrium
constant of a reaction; it only accelerates its rate. Not all reactions are catalyzed by enzymes:
Some occur spontaneously, e.g. the conversion from L-glutamate gamma-semialdehyde into
water and (S)-1-pyrroline-5-carboxylate (MetaCyc identifier: SPONTPRO-RXN).

Enzymes are hierarchically classified based on the reactions they catalyze [121]. The clas-
sification scheme consists of four levels, each represented by a separate digit and ordered from
most generic to most specific. The first level comprises the following 6 categories:

1. Oxidoreductases catalyze oxidation/reduction reactions.

2. Transferases catalyze the transfer of functional groups.

3. Hydrolases catalyze the hydrolyzation of a substrate into two products.

4. Lyases catalyze the non-hydrolytic addition or removal of atom groups from substrates.
5. Isomerases catalyze isomeric changes within a single compound.

6. Ligases join together two molecules under ATP consumption.

Figures 1.5 and 1.6 give an example for each category of the first level.

For instance, an enzyme with the EC number 5.3.1.9 belongs to the isomerases (category
5). More specifically, it is an intramolecular oxidoreductase (5.3), which interconverts aldoses
and ketoses (5.3.1). The fourth digit is an index to distinguish enzymes acting on different
reactants (glucose-6-phosphate and fructose-6-phosphate in this case).

Relating enzymes to reactions

A many-to-many relationship exists between enzymes and reactions, meaning that one enzyme
may catalyze several reactions and that one reaction may be catalyzed by several enzymes.

Multifunctional enzymes such as Arolp in Saccharomyces cerevisiae may carry out several
subsequent reactions (5 in the case of Arolp). A multifunctional enzyme possesses multiple
functional sites, which enable compound channeling.
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Figure 1.5: Examples for the first, second and third category of the first level of the enzyme classifi-
cation scheme. The compound structure images were taken from KEGG [86].



4. Lyases
3-Dehydroquinate

0 O\ OH
H 06
v :% N 7
HO = O/ ¥ NOH Hydroxylgroup
OH \ OH is highlighted in
C00944 1 blue.
NV C02637
Example: 4.2.1.10 H @ 3-Dehydroshikimate
Name: 3-Dehydroquinate
hydro-lyase C0o0001
KEGG identifier: R03084
Water
5. Isomerases
0
OH 1
I HO—F:’—O
HOALOED\O_?:O HO Different
OH position of
o “u phosphate
HO | OH group is
OH highlighted in
D-glucose 1- blue.
00103 phosphate 00092
D-glucose 6-
Example: 5.4.2.2 phosphate

Name: alpha-D-glucose
1,6-phosphomutase
KEGG identifier: R08639

6. Ligases
Acetate S Acetyl-CoA
) o

ATP g - " AMP Diphosphate
W5 W WP P
n MG Transferred
) : atom groups
Example: 6.2.1.1 ] CoA are encircled in
Name: Acetate:CoA ligase corresponding
KEGG identifier: R00235 colors.
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tion scheme. The compound structure images were taken from KEGG [86].
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Figure 1.7: This Figure illustrates the many-to-many relationships between genes and reactions with
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The image of the ORF is taken from SGD [74], the image of the protein structure from PDB [14].
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When compounds are channeled, they are not released from the enzymes but passed from
one enzyme to another one or, as in the case of Arolp, from one catalytic site to another one,
thus increasing the efficiency of metabolism.

Isoenzymes catalyze the same reaction, e.g. in Escherichia coli three different aspartate
kinases catalyze the conversion from L-aspartate to L-aspartate-4-phosphate. Each is regulated
in another way, thus isoenzymes allow the cell to fine-tune metabolic reactions.

Furthermore, a many-to-many relationship exists between EC numbers and reactions, be-
cause reactions with the same EC number may differ by their substrates and one reaction may
be catalyzed by various catalytic mechanisms (corresponding to different EC numbers). For
instance, homoserine dehydrogenase with EC number 1.1.1.3 converts L-homoserine into L-
aspartate 4-semialdehyde. There are two reactions associated to this EC number, having either
NAD™ or NADPT as a co-substrate. Another example is EC number 1.1.1.23, which is asso-
ciated to two reactions: The first converts histidinol to histidinal and the second histidinal to
histidine.

Finally, a many-to-many relationship exists between genes and enzymes. Several genes may
code for different sub-units of one enzyme and several enzymes may be synthesized from one
gene via alternative splicing. Figure 1.7 illustrates the many-to-many relationships between
an enzyme-coding gene and its associated reactions.

Regulation of enzyme-coding genes

The activity of enzymes may be regulated on several levels, including the transcriptional level
(regulation of the enzyme-coding gene’s expression) and the post-transcriptional level (in-
hibitors and activators binding to the enzyme). As this thesis deals with the interpretation of
a set of associated genes, the focus here is on the transcriptional level. Enzyme-coding genes
involved in a common pathway are frequently grouped in operons and regulons. An operon
is a part of the genome that contains a set of genes that are controlled by common regulatory
elements, and that are transcribed together from a common promoter (the binding site of the
RNA polymerase). Figure 1.8 shows an example of an operon. A regulon is defined as "a set
of genes subject to regulation of one and only one regulator." (RegulonDB, [61]). In contrast
to an operon, the genes of a regulon are not necessarily under the control of a single promoter.
A classical example of a regulon is the arginine repressor of E. coli [108].

Operons and regulons allow the cell to switch on or off an entire pathway in response to
environmental signals.

1.4 Metabolic databases

Metabolic information is available in the classical metabolic textbooks, in the biochemical
literature and more recently in metabolic databases.

The two most important generic metabolic databases are KEGG [86] and BioCyc [22].
Other metabolic databases, such as Reactome [165] (human metabolism) and UM-BBD [50]
(microbial degradation pathways) are also relevant, but more specialized.
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KEGG and BioCyc cover many organisms and store pathways that are either collected from
the literature or predicted with automated or semi-automated metabolic reconstruction proce-
dures [87, 114]. Both consist of a collection of databases (KEGG: KEGG LIGAND, KEGG
RPAIRS, KEGG GLYCAN ...), (BioCyc: MetaCyc, EcoCyc, HumanCyc, ...).

KEGG and BioCyc differ in the way they organize the metabolic data. In BioCyc, organism-
specific metabolic pathways are dynamically drawn, whereas KEGG shows static maps that
unite all known reactions involved in a common “theme” as defined by the KEGG team, such
as purine metabolism. Organism-specific reactions in these maps can be highlighted upon
mouse-click.

KEGG and BioCyc have different strengths and weaknesses [169, 103]. The advantage of
KEGG for metabolic pathway prediction is the manual annotation of the reactant pairs of a
reaction and their roles, which are provided by the RPAIR database [96]. Its disadvantage is
the absence of organism-specific pathways. Because a KEGG map is not conceived as a path-
way, but rather as a union of all known reactions belonging to a common “metabolic theme”, it
cannot serve as reference for the evaluation of pathway prediction. BioCyc documents better
than KEGG its sources (literature, experimental evidence) and separates clearer between pre-
dicted and annotated pathways. Instead of "a union of reactions" it displays organism-specific
pathways at different levels of detail, which in contrast to KEGG include the side compounds.
The relationship between EC numbers and reactions is also less ambiguous than in KEGG.
However, reactant pair annotation as in KEGG RPAIR is absent from BioCyc. Table 1.1 sum-
marizes the differences between KEGG and BioCyc that are relevant for pathway prediction,
whereas Figure 1.9 shows an example that illustrates the different pathway concept of KEGG
and BioCyc.

The differences between KEGG maps and BioCyc pathways illustrate that it is not always
clear where to draw the border between metabolic pathways. This touches upon the problem
of metabolic pathway definition, which will be discussed in detail in section 1.7.

1.5 Mapping of metabolism onto a network

In order to predict metabolic pathways, metabolic data has to be represented in a structured
fashion that makes the application of prediction algorithms possible.

Metabolism has been represented using stoichiometric matrices, graphs, rule sets, first-order
logic and other formalisms (see section 1.10.3). Since the pathway prediction techniques pre-
sented in this work are based on the extraction of relevant parts from graphs, the representation
of metabolism as a graph will be discussed in more detail.

A graph is a mathematical abstraction of connected objects and consists of nodes (also
called vertices) and edges, which connect the nodes (See appendix A for a brief introduction
to graph theory). In this thesis, the terms “network” and “graph” are more or less used as
synonyms. Network refers to a set of interconnected biological objects (e.g. compounds and
reactions in a metabolic network), whereas graph refers to the formal representation of a
network.

It is not trivial to map metabolism onto a graph in a meaningful way. Some network repre-
sentations suffer from important drawbacks, and are therefore less suited for the prediction of
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Table 1.1: Differences between KEGG and BioCyc that are relevant for metabolic pathway prediction

14

’ Property \ KEGG \ BioCyc ‘
Pathway Clickable, Dynamically drawn,
display static maps clickable pathways
Pathway Maps merge Each variant
variants all known variants is a separate

of a pathway pathway
Organism Organism-specific Pathway variants
specificity parts of maps are organism-

can be highlighted specific
Side Maps do not Pathways include
compounds include side side compounds,

compounds which are marked

as such

EC number- EC number EC number
reaction- reaction relationships reaction relationships
mapping are sometimes ambiguous | are rarely ambiguous
Direct gene- Stored in KGML Stored in biopax files
reaction- files, but not and accessible
relation- accessible via web inter- | via web interface
ships face or API
Reactant pair KEGG RPAIR Absent
annotation
Predicted versus | Status not Predicted pathways

annotated clearly indicated well separated from
pathways annotated pathways

(Tier 1, 2 and 3)
Documentation | Links to Literature sources
of data literature are well referenced
sources sparse
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Figure 1.9: Representation of lysine biosynthesis in S. cerevisiae in KEGG (A) and MetaCyc (B).
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each of which is specific to a set of organisms. The pathway shown in B is the lysine biosynthesis
pathway IV (MetaCyc identifier LYSINE-AMINOAD-PWY).
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metabolic pathways than others [164].

o Compound-centered networks. A node represents a compound and an edge represents
a reaction connecting two compounds. Since many reactions involve more than one
substrate and/or product, several edges represent the same reaction. A graph traversal
algorithm may thus cross the same reaction several times, in the worst case connecting
one of its substrates with another one or one product with another one.

e Reaction-centered networks. A node represents a reaction and an edge represents a
compound that is the product of one reaction and the substrate of another one. This
representation faces the same problem as the compound-centered network: a compound
involved in several reactions is represented by several edges, thus a graph traversal al-
gorithm may cross the same compound several times.

e Bipartite networks. Bipartite networks consist of two node sets: one represents com-
pounds and the other reactions. A special case of bipartite networks are Petri nets, where
the two nodes sets are named places and transitions, respectively. Places can be marked
by tokens and firing rules can be defined on the transitions that describe the consumption
of tokens from input places and the production of tokens in output places. When applied
to metabolism, compounds are treated as places and reactions as transitions [98]. An-
other special case of this network type is the and-or graph employed in [131], where
reactions are represented by and-nodes and compounds by or-nodes. Bipartite networks
avoid the problems of compound-centered and reaction-centered networks and in addi-
tion allow to search paths between compounds and/or reactions [164] and have therefore
been selected for this thesis.

e Hypergraphs. In hypergraphs, an edge may connect more than two nodes. In principle,
compound-centered and reaction-centered hypergraphs could be used, but so far, only
the compound-centered hypergraph has been mentioned in the metabolic pathway pre-
diction literature [113], with compounds as nodes and reactions as hyperarcs (directed
hyperedges). The stoichiometric matrix employed in flux balance analysis is mathemat-
ically equivalent to a (compound-centered) hypergraph ([93]). Despite of their recent
recommendation in [93], hypergraphs have a disadvantage for pathway prediction: It is
not as easy as in bipartite graphs to predict pathways for an input combining compounds
and reactions.

Figure 1.10 summarizes the different network representations.

Another issue is the representation of reaction directionality in a network. As discussed in
section 1.3.2, all reactions are reversible in principle. However, organism-specific metabolic
networks should account for physiologically irreversible reactions. A precondition for the
representation of irreversible reactions is a directed network. Directed metabolic networks
also avoid another pitfall: Their directedness prevents a graph traversal algorithm to go from
one substrate to another substrate or from one product to another product of the same reac-
tion. For instance, consider the example reaction in Figure 1.4. If the algorithm could go
from one substrate to the second, the resulting pathway would suggest the synthesis of ATP
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from D-glucose within one step, which is biochemically impossible. In a directed bipartite
metabolic network, reversible reactions can be represented by including two nodes; one for
each reaction direction (see Figure 1.10 F). Irreversible reactions can then be represented by
including only one direction node. To prevent a graph traversal algorithm to go twice through
the same reaction, forward and reverse direction node have to exclude each other mutually,
i.e. they cannot both appear in the same path [31, 32]. Thus, a XOR (exclusive OR) rela-
tionship exists between the forward and reverse direction of a reaction. If the direction nodes
would not be mutually exclusive, the following pathway could be predicted from the reaction
shown in Figure 1.4: D-glucose — 2.7.1.2_forward — D-glucose 6-phosphate —
2.7.1.2_reverse — ATP. This pathway falsely suggests that ATP can be synthesized from
D-glucose within two reaction steps.

In this thesis, metabolic networks were constructed from all reactions and compounds
present in a metabolic database and are thus not organism-specific. In these generic networks,
all irreversible reactions were represented as reversible for two reasons: (1) to avoid conflict-
ing reaction directions in case a reaction proceeds in one direction in one organism and in the
other direction in another organism and (2) to take into account the fact that all reactions are
potentially reversible (see section 1.3.2). However, the tools developed during this thesis can
as well deal with networks containing irreversible reactions.

To summarize: Metabolic networks in this thesis are, if not stated otherwise, directed bipar-
tite networks in which each reaction is represented by two mutually exclusive nodes: one for
its forward and one for its reverse direction.

1.6 Properties of metabolic networks

The representation of metabolism as a network allows to quantify a number of topological
properties.

1.6.1 Power law and small world property

In [82] topological properties of metabolic networks from 43 different species have been mea-
sured. First, the authors plotted the distribution of compound node degree frequencies on a
logarithmic scale, where the degree of a compound is the number of reactions it is involved in.
They found that this distribution follows a power-law P(k) ~ k™Y, where k is the compound
node degree and P(k) is the probability of degree k in the network. Figure 1.11 shows a com-
pound node degree distribution for KEGG data. The power-law is indicative of a scale-free
property of the network, i.e. "any part of the scale-free network is stochastically similar to the
whole network, and parameters are assumed to be independent of the system size" [91]. This
particular topology is not displayed by random networks.

Second, Jeong et al. measured the network diameter, which they define as "the shortest
biochemical pathway averaged over all pairs of substrates" [82] and which is around three for
the investigated metabolic networks. From the small network diameter, Jeong and coworkers
deduce a small world property of the metabolic network, which states that each node can be
reached from each other node within a few steps.
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Figure 1.10: Figure A gives an example for the compound-centered network, Figure B for the reaction-
centered network, Figure C for a bipartite network and Figure D for a hypergraph. Note that all net-
works are directed. Figure E illustrates the problem of undirected networks: a graph traversal algorithm
can easily go from one substrate to another one (in this case from D-glucose to ATP) or from one prod-
uct to another one. Figure F illustrates how each reaction direction is represented by its own node in the
directed bipartite network. The two nodes 2.7.1.2_forward and 2.7.1.2_reverse are mutually exclusive,
i.e. they cannot both appear in the same path.
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Figure 1.11: An example of the kind of plot introduced by [82]. The distribution of compound node
degree probabilities P(k) in a small molecule network constructed from KEGG LIGAND version 41.0
is plotted on a logarithmic scale. The probability of a degree is estimated by its frequency, i.e. the ratio
between the number of nodes having this degree and the total number of nodes in the network. This
plot differs from the one shown in [82] inasmuch as the degree is not separated into in-degree (number
of incoming arcs) and out-degree (number of outgoing arcs), the node degrees are not binned and the
metabolic data comes from another source. It can be seen that a linear function (that is a power law in
logarithmic scale) does not describe well the two tails of this distribution.
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It should be noted that some authors employ a different definition of network diameter,
which is: "... the path length of the longest pathway among all the shortest pathways [107]".
The network diameter definition of Jeong and coworkers corresponds rather to the average
path length (abbreviated AL, also called characteristic path length), which is defined by Watts
and Strogatz as the "number of edges in the shortest path between two nodes, averaged over
all pairs of nodes" [41].

Jeong et al. postulated that the small world property of metabolic networks is due to the
presence of hub compounds, i.e. compounds involved in a large number of reactions. To
give an example of hub compounds, Table 1.2 lists the top ten hub compounds for the small
molecule metabolic networks used in this thesis, namely the KEGG LIGAND network, KEGG
RPAIR network (both version 41.0) and MetaCyc network (version 11). It is of note that the
KEGG LIGAND and MetaCyc lists are similar, but differ from the KEGG RPAIR list. The
reason for this difference will be explained in section 1.10.3.

Table 1.2: Top ten hub compounds of the three networks used in this thesis.

KEGG LIGAND KEGG RPAIR MetaCyc
version 41.0 version 41.0 version 11.0
H,O H,O H,0O
H* ATP 0O,

0, NH3 NADPH
NADP S-Adenosylmethionine NADP
NADPH CO, NAD
NAD pyruvate NADH
NADH glutamate ATP
ATP acetyl-CoA CO,
CO, 03 phosphate
phosphate oxoglutarate diphosphate

The two properties claimed by Jeong and coworkers (power-law degree distribution and
small world) have been questioned by a number of authors. The small world property will be
criticized in section 1.10.3. Khanin and Wit computed the degree distributions of several bio-
logical networks and measured the goodness of fit of different functions to those distributions.
Their results demonstrated that these biological networks do not follow a power law distribu-
tion [91]. In a recent review, the power law and the small world property were declared to
be "myths of network biology" [104], because they are not statistically valid (power law) or
even due to the computation of shortest paths that are biochemically invalid (small world, see
section 1.10.3).

1.6.2 Modularity and hierarchical organization

Several authors point out the modularity of metabolic networks [140, 128] or describe algo-
rithms to partition a metabolic network into smaller units [144, 68].
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In [140], the modularity of the Escherichia coli metabolic network is measured with the
cluster coefficient. The node-specific cluster coefficient C; is a function of the fraction of real-
ized connections among all possible connections between a node and its group of neighbors.

It is defined as
2n

ki(ki—1)
where i is a node index, n is the number of direct links between the k nearest neighbours of
node i and N is the number of nodes in the network. The cluster coefficient C is then obtained
as the average over all node-specific cluster coefficients. The cluster coefficient indicates that
the metabolic network of E. coli is highly modular.

Ravasz et al. [140] pointed out a contradiction between the high modularity of metabolic
networks on the one hand and the presence of hub compounds connecting all nodes on the
other hand. To resolve this contradiction, they suggest that metabolic networks are hierar-
chically structured. In a hierarchically structured network, several small modules form larger
modules, thus creating a hierarchy of nested modules. The modules have many intra-module
connections, but only few inter-module connections, which explains how a modular network
can give rise to a power law distribution of node degrees. To check this hypothesis, Ravasz and
colleagues defined a topological overlap matrix, where a value of 1 indicates that two com-
pounds are connected to the same neighbors and a value of 0 indicates that two compounds
do not share neighbors. Then, they applied a hierarchical clustering algorithm to this topolog-
ical overlap matrix and identified modules at various levels of distance. In many cases, these
modules corresponded well to biochemical units (e.g. purine metabolism).

C; = (1.1)

1.6.3 Bow-tie shape

Several authors have commented on the bow-tie shape of metabolism [33, 175]. This special
shape arises because hundreds of nutrients (the left fan of the bow-tie) are catabolized into a
small set of precursors (the knot of the bow-tie), from which the hundreds of building blocks
needed by the cell are synthesized (the right fan of the bow-tie).

It has been stated that this particular structure has evolved to allow rapid adaptation, to
tolerate perturbations and to ease regulation [33].

1.6.4 Core and periphery

In section 1.3, the classification of metabolism into core and peripheral has been mentioned.
In [2], this classification receives a graph-theoretical basis. Core reactions are defined as con-
nected sets of reactions that are active in all tested environments, whereas peripheral reactions
are only activated in specific environments. The effect of different environments on reaction
activity is simulated with flux balance analysis, which calculates flux distributions through
metabolic networks given an objective function. The core, which corresponds to the "knot" of
the bow-tie, was found to be conserved across different organisms, whereas the periphery (the
two fans of the bow-tie) alters considerably, reflecting adaptation to different environments
[128].
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In [126] the idea of a conserved core is extended to find the minimal set of essential yeast
genes, that is the minimal number of genes required by the cell to survive in a nutrient-rich
medium. The authors conclude that the major part of dispensable genes are important in
specific environments and only 20% of yeast genes are essential. In a nutrient-rich medium,
yeast cells survive with a minimal core metabolic network, but as soon as nutrients are lacking,
"peripheral" pathways need to be activated.

1.7 Metabolic pathway definition

A precise definition of metabolic pathways eases their accurate prediction. However, it is not
as easy as one might think to precisely define what is meant by "metabolic pathway", a fact
that is also underlined by the large number of existing definitions.

In the following, different definitions are listed, approximately sorted from more general to
more specific. A definition is more general than another one if it covers more pathways than
the other one.

The definitions have been conceived with different questions in mind and it is therefore
difficult to find criteria to compare them.

A number of metabolic pathways are described in the literature, which are confirmed by
various experiments. Since these pathways represent biochemical knowledge, they should
be covered by a good pathway definition. It should also be possible to experimentally vali-
date pathways satisfying the definition in question. Finally, a good definition should prohibit
pathways that violate basic principles of biochemistry.

Many of the pathway definitions listed below are tailored to specific pathway validation
experiments (discussed in section 1.9) and linked to a particular metabolic pathway prediction
approach (see section 1.10.3). Table 1.3 compares different definitions according to these
critera.

Table 1.3: Summary of metabolic pathway definitions.

Metabolic Coverage of Consideration of Selected experimental Problems of definition
pathway known metabolic hub compounds validation techniques for metabolic
definition pathways pathway prediction
Classical/ Yes, all No Atom tracing, This definition provides
topological in vitro reconstitution, no distinction between bio-
mutant construction, ... chemically irrelevant and
relevant pathways.
Atom-flow | If carbon only is considered, | Hub compounds Atom tracing Atom mappings are required
based sulfur incorporation and are avoided experiments. to apply this definition in
similar pathways are not by atom tracing. practice. They may be
covered, but definition obtained computationally
may be extended to or manually.
other atom types.
Feasibility- | Yes, with appropriate Yes, with auxiliary In vitro In vivo experimental
based contents of substrate compound set. reconstitution. validation may be difficult,
compound set A and because compounds not
auxiliary compound set S. specified as
substrates or auxiliary
compounds should not
interfere. Assignment
of compounds to sets A
and S may require prior
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knowledge of the pathways
to be predicted.

Functional Not all reference Yes, Manipulation of activators Does not cover all
pathways are defined implicitly. or inhibitors affecting the reference pathways.
on the basis of the expression of genes in Requires knowledge of
their regulation. the pathway, measurements of regulation.
gene co-expression in a variety
of conditions.
Stoichio- Some reference pathways Yes, by treating Measurement of fluxes Does not cover all
metric contain unbalanced internal hub compunds as with atom tracing the reference pathways.
compounds, e.g. TCA external compounds. techniques. External compounds have to
cycle [132]. Measurement of concentrations | be assigned manually.
of selected compounds and EM analysis assumes
of growth rate for wild type additionally that metabolism
versus knock-out mutants. is in steady state (e.g. compound

a relevant time scale)

concentrations remain constant at

Chemical With appropriate Yes, hub compounds can | In vitro External compounds have to
organi- choices for in- and be treated as external reconstitution. be assigned manually.

zation outflows, most by adding in- and In vivo experimental validation
theory reference pathways outflows. may be difficult.

should be covered.

At this point, the difference between "path" and "pathway" should be clarified. A path is a
graph-theoretical concept that refers to a linear sequence of nodes (see Appendix A for details),
whereas the term (metabolic) pathway refers to a set of interconnected reactions involved in
common biological function. In contrast to paths, pathways may be branched.

1.7.1 Classical definition of metabolic pathways

In the words of the classical biochemistry textbook Nelson and Cox [117], a metabolic path-
way is a “sequence of enzyme-catalysed reactions by which a living organism transforms an
initial source compound into a final target compound.”

This definition has to be extended to cover branched and cyclic pathways (such as aromatic
amino acid biosynthesis and TCA cycle, see Figure 1.12) and to take into account spontaneous
reactions. It may be reformulated thus:

“A metabolic pathway is a sequence of enzyme-catalyzed or spontaneous reactions by which
a living organism transforms an initial set of source compounds into a final set of target com-
pounds, where source and target compound sets may overlap.”

As discussed in section 1.5, metabolism may be represented as a graph. A graph-theoretical
formulation of the classical definition is for example:

“A metabolic network is a directed reaction graph with substrates as vertices and directed,
labeled edges denoting reactions between substrates catalyzed by enzymes. A metabolic path-
way is a special case of a metabolic network with distinct start and end points, initial and
terminal vertices, respectively, and a unique path between them” [59]. Note that this defini-
tion implies that metabolism is represented by a directed compound-centered network. It is
however easy to adapt to bipartite networks. In addition, this definition needs the same mod-
ifications as Nelson and Cox’s definition in order to account for spontaneous reactions and
cyclic pathways.

More generally, a graph-theoretical formulation of the classical pathway definition could
be:
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Figure 1.12: Examples for a cyclic pathway (TCA cycle, Figure A) and a branched pathway (aromatic
amino acid biosynthesis, Figure B). The pathway images were taken from MetaCyc [22].
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“A metabolic pathway is a connected subgraph of the metabolic graph.”

Since the classical definition can be expressed entirely in a graph theoretical form, without
the need of additional concepts, it could be also called the topological definition of metabolic
pathways.

Kiiffner et al. applied the topological definition consequently and enumerated paths between
glucose and pyruvate in a network constructed from KEGG, Brenda [26] and ENZYME [9].
They found no less than 500,000 paths [98]! This illustrates well the problem of combinatorial
explosion that a pathway prediction algorithm is faced with.

Not all of these paths are relevant biochemically. Consider for example the path D-glucose
— 2.7.1.2 — ADP — 2.7.1.40 — pyruvate shown in Figure 1.13. This path suggests that
pyruvate can be synthesized from D-glucose in two steps with ADP as an intermediate com-
pound. Such a pathway is biochemically impossible, because the structures of D-glucose and
ADP and the structures of ADP and pyruvate are so different that no enzyme can carry out all
the required atomic re-arrangements, additions and removals in one reaction.

D-glucose

b
B

D-glucose-6-phosphate
phosphoenolpyruvate

Figure 1.13: Pathway illustrating the problem of the classical metabolic pathway definition, namely
that not all sequences of reactions represent biochemically acceptable pathways. In this example path-
way, the two reactions are connected via ADP, which is a side compound that does not carry atoms
from glucose to pyruvate.

Thus, the classical definition needs refinement to exclude irrelevant pathways.

The rule-based and weighted network pathway prediction approaches (see 1.10.3) make use
of the classical definition with some restrictions, thereby manually or automatically excluding
irrelevant pathways.

1.7.2 Atom-flow based definitions of metabolic pathways

Atom-flow based pathway definitions take into account that a metabolic pathway transfers
atom groups from a source compound to a target compound. Figure 1.14 illustrates the transfer
of atom groups in the example reaction shown in Figure 1.4.

Arita is credited with the invention of the atom-flow based pathway definition, which he
phrases as follows: "A metabolic pathway (pathway for short) from metabolite X to Y is
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Atom transfer in reaction R00299

ADP

ATP

C00031

cooo9z

D-glucose D-glucose 6-phosphate

Figure 1.14: This Figure illustrates the transfer of atoms in a reaction that converts D-glucose and ATP
into D-glucose 6-phosphate and ADP (KEGG identifier R00299). Corresponding atom groups on each
side of the reaction are encircled with the same color. Atom transfers are represented by dashed lines.

defined as a sequence of biochemical reactions through which at least one carbon atom in X
reaches Y" [7].

This definition allows to differentiate between main compounds carrying matter through a
pathway and side compounds providing energy or electrons. Karp expresses a similar idea by
defining main compounds as follows: "The main compounds lie along the backbone of the
pathway - these compounds are shared between consecutive steps of a pathway" [88].

Karp’s applies to all atom types, whereas Arita’s is specific to carbon atoms. Thus, Arita’s
definition does not cover pathways proceeding via intermediates that do not contain carbon
atoms, e.g. sulfide in the sulfur incorporation pathway.

When predicting metabolic pathways, an algorithm needs to know from which substrate
of a reaction to go to which of its products. Applying Arita’s definition helps to avoid side
compounds such as ADP. Karp’s definition is not helpful for pathway prediction, since it is
pathway-specific. Thus, the pathway to be predicted needs to be known beforehand in order
to classify compounds as main or side, which is an obvious contradiction. What is needed is a
reaction-specific classification of compounds as main or side compounds. Reaction-specificity
is required, since the role of a compound can differ from reaction to reaction. For instance,
in the reaction with EC number 3.6.1.8 (conversion of AMP into ATP), ATP is a main com-
pound, whereas it is a side compound in the example reaction presented in Figure 1.4. Such
a classification of reactants has recently been presented by Kotera et al. for KEGG. Section
1.10.3 presents how metabolic pathway prediction can make use of this classification.
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1.7.3 Feasibility-based definition of metabolic pathways

Recently, Esa Pitkidnen has advanced a metabolic pathway definition that relies on the concept
of feasibility [131]. Given a set of reactions R and a set of source compounds A, a feasible
metabolism F from A is defined as the subset of R that includes all the reactions reachable
from A. This means that a compound present in A can act either directly as a substrate of a
reaction in F' or indirectly as a substrate of a reaction in F after having been converted by
other reactions in F. Thus, a reaction in F' only involves compounds present in A or derived
from compounds in A by other reactions in F.

A metabolic pathway is then defined as follows: "A metabolic pathway from A to [a target
compound] 7 is any minimal feasible metabolism F from A to ¢, that is, removing any reaction
from F leads to violation of requirement (i) [all reactions in F are reachable from A] or (i1)
[t is among the products of the reactions in F']." (words in brackets added by Karoline Faust)
[131].

To deal with side compounds, an auxiliary compound set S is defined. Compounds in this
set are freely available as substrates without having to be produced from A. Whether a pathway
is feasible or not therefore depends on the contents of A and S.

The main difference to the topological definition is that Pitkiinen’s definition only accepts
pathways as valid that synthesize all the compounds contained in them, except those in the
auxiliary set. Figure 1.15 shows a pathway that satisfies Pitkdnen’s definition.

oxaloacetate

glutamate
alpha
Ketoglutarate

Figure 1.15: A feasible pathway from pyruvate to L-alanine. Pyruvate is a sufficient precursor to pro-
duce all intermediate compounds in this pathway, and no additional auxiliary compounds are needed.
Adapted from Figure 1 in [131].

The scope of a compound as defined in [49] expresses an idea similar to the concept of fea-
sible metabolism: The scope of a compound comprises all compounds that can be synthesized
from it given a set of reactions.
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1.7.4 Functional definition of metabolic pathways

In a personal communication, Jacques van Helden suggested a definition that emphasizes reg-
ulatory and functional aspects of metabolic pathways. He phrased it as follows: “Genes
whose products are involved in a same metabolic pathways are generally (but not always)
co-regulated. This regulation may differ from organism to organism. Different organisms
may respond to the same metabolic requirement by expressing different sets of enzymes and
transporters. The “boundaries” of a metabolic pathway should thus not be defined in terms
of absolute rules, such as key compounds or stoichiometry, but be considered as organism-
and even context-dependent. Other criteria can be used in addition to co-regulation, such as
operons, synteny, horizontal gene transfer (e.g. in plasmids) or any other criterion revealing
some functional association between sets of genes.”

1.7.5 Stoichiometry-based definitions of metabolic pathways

Stoichiometry-based definitions demand that a valid metabolic pathway stoichiometrically
balances all its internal compounds. Compounds classified as external do not need to be
balanced. The classification of compounds into internal and external is pathway-specific.

A famous stoichiometry-based definition of a metabolic pathway is the elementary mode
(EM), defined as the "minimal set of enzymes that could operate at steady state with all ir-
reversible reactions proceeding in the appropriate direction" [143]. Extreme pathways are
similarly defined, but differ from elementary modes by their treatment of irreversible and re-
versible reactions. For the calculation of extreme pathways, each reversible reaction is split
into two separate reactions for the forward and reverse directions, whereas in EM analysis, a
number of constraints is placed on reaction directionality [125].

A special case of a stoichiometry-based definition is the enzyme-subset introduced in [129].
It defines metabolic pathways as enzyme subsets which are: "groups of enzymes that, in
all steady states of the system, operate together in fixed flux proportions" [129]. These en-
zymes are considered to form linear metabolic pathways with the same steady-state flux and
to be co-expressed simultaneously. This definition forms a link between the functional and
stoichiometry-based definitions.

1.7.6 Metabolic pathway definition based on chemical
organization theory

Chemical organization theory is a general concept that can be applied to any kind of network
and which has applications in virus infection modeling [109], atmospheric photochemistry
[24] and metabolism [23]. According to chemical organization theory, a metabolic pathway
is considered as an organization if it is self-maintaining (all compounds can be re-generated
by the pathway) and closed (all compounds that can be generated given the reactions of the
pathway are part of the pathway).

The self-maintainance property combines stoichiometric balance with the idea of feasibility
proposed in [131]. Both, self-maintainance and feasibility, require that all compounds in a
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pathway can be synthesized by the pathway. The self-maintainance property requires in addi-
tion that each pathway synthesizing a compound within the organization is stoichiometrically
balanced.

Compounds that are not self-maintained can flow in or out of the organization. Importantly,
compound concentrations can either remain constant or increase, which is an important differ-
ence to EM analysis and related methods (see section 1.10.3), which assume approximately
constant compound concentrations.

Organizations can be ranked according to the number of different compounds they contain.
A changing metabolic network may move up- or downward this hierarchy. Thus, chemical
organization theory may be applied to describe the evolution of metabolic networks.

1.8 Which definition is most appropriate for pathway
prediction?

Most of these pathway definitions have been conceived with specific applications in mind.
For example, atom tracing experiments make use of the atom-flow based pathway definition.
Thus, in my opinion, the appropriateness of a definition depends on the use one makes of path-
way prediction. The functional definition for instance is most appropriate for the prediction
of pathways from functionally associated genes, because it defines a pathway through gene
association. When predicting pathways from sets of reactions or compounds, for instance to
measure metabolic distances between enzymes [30], the classical definition (with some con-
straints to avoid biochemically meaningless pathways), might be more appropriate than the
functional one.

1.9 Experimental validation of metabolic pathways

Different definitions emphasize different properties of metabolic pathways. Likewise, differ-
ent experiments validate different aspects of metabolic pathways, such as the inability of an
organism to synthesize a certain compound if the pathway is disrupted (validation of function)
or the flow of atoms through the pathway (validation of flux).

Experiments can be performed at different levels, i.e. at the level of the pathway compo-
nents (validation of interaction between enzymes and substrates, measurements of enzyme
activity etc.), at the level of the pathway in vitro (in vitro reconstitution) or in vivo (mutagen-
esis, 13C tracing, ...). For the reference pathways listed in the literature, the accumulation of
evidence from different experiments over the years led to their widespread acceptance. When
predicting metabolic pathways, it is important to be aware of the experimental techniques for
their validation. Therefore, three selected whole-pathway validation techniques are briefly
presented.
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1.9.1 Mutagenesis

A mutant lacking an enzyme of the pathway may not be able to produce the end product of that
pathway. If this disruption of the pathway renders the mutant unable to synthesize essential
compounds, the mutant is said to be auxotrophic for these compounds, i.e. it can only grow
when these compounds are supplied to it. Absence of the end product or accumulation of one
of its predecessors supports the hypothesis that the enzyme is indeed involved in the pathway.
A series of mutants, each lacking another enzyme of the pathway and accumulating another
intermediate compound, form a strong evidence for the pathway in question.

This classical strategy of elucidating a metabolic pathway has been developed by the fathers
of the one-gene-one-enzyme hypothesis, Beadle and Tatum. They identified two Neurospora
crassa mutants, which were unable to produce tryptophan. The first mutant (strain 10575)
could only grow in the presence of indole and accumulated anthranilic acid, which could be
utilized for growth by the second mutant (strain 4008) [156]. From this and similar findings
(e.g. [155]), it could be established that both anthranilic acid and indole are precursors of tryp-
tophan and that indole is first synthesized from anthranilate and then converted into tryptophan
(see also Figure 1.16).

A problem of mutant construction is the possible presence of isoenzymes or alternative
pathways consuming the predecessor or producing the end product. In addition, a many-
to-many relationship exists between genes and reactions (see section 1.3.3). Thus, a gene
knock-out may not always produce a phenotype that can elucidate a pathway.

0
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OH _:&7 H —
d:_' H"Q}/&uﬁ\H + HO/\#OH _‘. %\(O
2 N 2
H ]

synthesis H NH; synthesis OH
blocked in blocked in
anthranilic acid  mytant 10575 indole serine mutant 4008 tryptophan

Figure 1.16: The steps of the tryptophan pathway that were elucidated by generating different Neu-
rospora crassa mutants [156, 155].

1.9.2 Atom tracing

Atom tracing techniques (isotope labeling in combination with mass spectrometry or other
techniques to identify labeled compounds) confirm that atoms flow indeed through the path-
way in question (e.g. in [120, 172]).

1.9.3 In vitro reconstitution

Enzymes of a putative pathway are assembled together with the initial substrate and required
cofactors in vitro. The formation of the end product is then confirmed with mass spectrometry
or another compound identification technique (e.g. [173]).
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1.10 Review on the computational prediction of
metabolic pathways

In general, metabolic pathway prediction is the task of predicting biochemically valid
metabolic pathways given a set of compounds or reactions of interest (referred to as the seed
set) and metabolic data. More specifically, when given a group of associated enzyme-coding
genes from an organism of interest, the task is to predict the specific metabolic pathway in
which the gene products are involved. In addition to the metabolic network and the seeds,
most pathway prediction approaches take further information into account (e.g. compound
structures) in order to increase their prediction accuracy.

1.10.1 Pathway prediction and metabolic reconstruction

This thesis deals with de novo metabolic pathway prediction. In contrast, metabolic recon-
struction relies in most cases on known pathways. Metabolic reconstruction aims at recon-
structing the entire metabolism of an organism given its genome and additional information
available in the literature or from databases. The reconstruction process can be carried out
manually (e.g. [46]), automatically (e.g. [87, 114]) or semi-automatically (automated predic-
tion combined with manual curation as in the second tier of BioCyc [22]). During automatic
reconstruction, the enzymes of the organism of interest are mapped on a set of known path-
ways. This may result in gaps, if enzymes catalyzing reactions of the pathway are absent from
the organism. Absence of enzymes may have the following reasons:

e The pathway is not present in the organism of interest. [124]

e A variant of the pathway is present in the organism of interest. [124]

e The missing enzymes have not yet been identified in the genome. [124]
e The reaction is spontaneous.

Sophisticated procedures have been developed to fill these gaps [92, 65], but they do not
address the existence of alternative pathways.

However, an automated metabolic reconstruction procedure was published recently, which
does not rely on pre-defined pathways and can therefore detect alternative pathways [28].

1.10.2 Prediction of metabolic pathways - the challenge

Metabolic pathways are highly interconnected, forming large complex networks as shown in
Figure 1.17. Extracting relevant pathways from this "hairball" is a challenging task.

Pathway prediction algorithms have to deal with the exponential explosion of the number
of possible pathways [111], because of the many reactions that form more than one product.
As explained in section 1.7.1, not all topologically possible pathways are biochemically rele-
vant. Thus, an algorithm has to sieve a large set of pathways to arrive at a subset of relevant
pathways.
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Figure 1.17: A bipartite, directed metabolic network constructed from KEGG (version 41.0) is shown.
The network consists of several components, the largest of which is densely interconnected and contains
the majority of compounds and reactions. The image was generated with Cytoscape [150].

The following constraints have been employed by various authors to restrict the number of
possible metabolic pathways:

e Constraints on pathway length/weight

— Minimal pathway length or weight: The result pathway should be as short (or as
light) as possible (e.g. in [54, 31, 7, 138]). If no other objective is considered,
this means that reactions or compounds can occur only once in the pathway and
consequently cycles cannot be predicted.

— Lower and upper boundary on pathway length or weight: The result pathway
should not be longer, shorter or heavier than the indicated maximal or minimal
length or maximal weight (e.g. in [31, 32]).

e Constraints on reaction directionality

— Reaction directions: The pathway should be thermodynamically feasible, e.g. re-
actions should proceed in their physiological direction (e.g. in [129, 111]).

— Mutual exclusion of reaction directions: The two directions of a reaction should
not appear together in a result pathway (e.g. in [31, 111]).

e Constraints on pathway composition

— Imposing or excluding compounds and/or reactions: Certain compounds and/or
reactions should be present or absent in the result pathway (e.g. in [113, 18, 138,
111]).
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e Constraints on compound production

— Maximization of yields: The molar yield of a desired compound should be as high
as possible [161].

— Maximization of ATP production: The result pathway should produce a maximum
of ATP [11].

e Constraints on compound stoichiometry

— Stoichiometric balance: Internal compounds have to be stoichiometrically bal-
anced (e.g. in [11, 129, 111]).

— Minimal number of unbalanced intermediate compounds: The result pathway
should minimize the number of unbalanced intermediate compounds [133].

e Constraint on pathway specificity

— Optimization of pathway specificity: A compound is the more specific, the fewer
the number of reactions is in which it acts as a substrate or product. The path-
way specificity is the sum of the compound specificities in the result pathway and
should be minimal [133]. The specificity concept was inspired by the observation
that penalizing highly connected (i.e. unspecific) compounds improves pathway
prediction [31, 32].

Metabolic pathway prediction approaches, as different as they may be, have two
metabolism-specific problems to deal with:

e They have to treat hub compounds (also termed highly connected compounds or high-
presence compounds by different authors). An algorithm that accepts hub compounds
such as water, ADP or ATP as intermediates in a pathway will in most cases predict
a biochemically wrong pathway (such as the one shown in Figure 1.13). However,
hub compounds may be valid intermediates in some pathways (e.g. ATP in purine
metabolism, see Figure 1.18).

e They have to deal with reaction directions. This problem is often solved by an appro-
priate graph representation (as discussed in 1.5). Alternatively, it can be tackled by
introducing constraints on the reaction directions as in EM analysis.

If metabolic pathways are predicted from a set of query genes, genes have to be mapped to
reactions, which is complicated by the many-to-many relationship between them. If the query
genes are derived from a genome-scale experiment, scores associated to the genes have to be
taken into account as well.

Metabolic pathway prediction from multiple seeds faces in addition the following chal-
lenges:

e The result pathway should not depend on the order in which seeds are provided.
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Figure 1.18: Zoom into the purine metabolism KEGG map. This Figure illustrates that the hub com-
pound ATP is a valid intermediate in several pathways. ATP is encircled in maroon.

e It should be possible to provide groups of seed nodes. As mentioned in section 1.3.3,
EC numbers are ambiguous and may comprise several reactions. A prediction approach
that can handle seed node groups can treat all reactions of an EC number as belonging to
the same group. As soon as one of the group members occurs in the predicted pathway,
the seed node group is considered to be included in the pathway.

e [t should be possible to integrate scores derived from high-througput experiments into
the prediction approach in order to preferentially include reactions that are up- or down-
regulated according to these data.

1.10.3 Two-end metabolic pathway prediction

Two-end metabolic pathway prediction is a special case of metabolic pathway prediction that
predicts pathways from two seeds or seed sets. In case pathways are predicted from two seed
sets, two-end pathway prediction is also called multiple-to-multiple end pathway prediction.

A remark on notation is needed here. Pathway prediction approaches are classified ac-
cording to the number of seed nodes they take into one-seed, two-seed and multiple-seed
approaches (synonymously called one-end, two-end and multiple-end). This thesis focusses
on the two-seed and multiple-seed approaches.

Two-end metabolic pathway prediction has several applications, for instance:

e Metabolic reconstruction. Two-end pathway prediction can suggest organism-specific
variants of metabolic pathways.
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e Measurement of the metabolic distance between enzymes. Didier Croes measured the
distance between enzymes that were associated in various ways (e.g. by protein-protein-
interactions, fusion of their genes or grouping of their genes in operons) [30].

e (Calculation of metabolic network properties. For example, Jeong et al. searched paths
between all compound pairs in a metabolic network to measure its diameter [82] (see
section 1.6).

The tables 1.4 and 1.5 summarize the major two-end metabolic pathway prediction ap-
proaches.
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Path finding approaches

In this section, prediction approaches are presented that do not balance compounds and can
therefore not predict stoichiometry. These approaches are also referred to as path finding
approaches.

Path finding approaches rely in most cases on a graph traversal algorithm in order to enu-
merate paths between two compounds or reactions of interest. An exception is the path find-
ing approach described in [42, 43], which relies on constraint programming. Path finding
approaches are classified according to their treatment of highly connected compounds.

Tables 1.6 and 1.7 compare a number of path finding tools available on-line (i.e. with
web interfaces). When compiling these tables, MetaRouter [127] and PathMiner [112] were
not available at their published URLs (http://pdg.cnb.uam.es/MetaRouter/ and http:
//pathminer.uchsc.edu, respectively), therefore they are not included.
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A. Path finding without hub compound treatment

As mentioned in 1.6, a "small world" property of metabolic networks is postulated in [82], i.e.
in most metabolic networks, any two compounds can be connected by a short path (of length
around three). However, these authors failed to treat highly connected compounds and there-
fore based their analysis on biochemically invalid pathways. Several authors have repeated
this analysis and have demonstrated that the average shortest path length is much higher if
hub compounds are treated appropriately. For instance, the average shortest path length be-
tween compounds in the Escherichia coli network was measured independently in [107] and
[7] to be around eight, where the former authors treated hub compounds by excluding them
and the latter avoided them by atom tracing. The distribution of average path lengths between
reactions in the complete KEGG network peaked between five and eight reaction steps [32].

Currently, no path finding tool exists that does not treat hub compounds.

B. Path finding with exclusion of highly connected compounds

Many authors treat highly connected compounds by excluding them from the network [56,
164, 152, 107, 27]. This strategy has the drawback that pathways containing those compounds
as intermediates cannot be predicted. For instance, ADP and ATP are often excluded as typical
hub compounds, but are valid intermediates in the purine biosynthesis pathway. In addition,
the distinction of a non-hub from a hub node requires additional parameters (e.g. a threshold
on the node degree).

FMM [27] is an example for a path finding tool that treats hub compounds by excluding
them. Consequently, it fails to find a path between carbamoyl-phosphate and CTP (the start
and end point of pyrimidine ribonucleotides de novo biosynthesis). Remarkably, this path
finding tool is the only one in the tables 1.6 and 1.7 that predicts the glycolysis pathway
correctly from glucose and pyruvate. The reason is that pathways are post-filtered with KEGG
pathway maps. Strictly speaking, because of its use of KEGG maps, FMM is not a de novo
pathway prediction tool as the others discussed in this section. It has been included in tables
1.6 and 1.7 because it shares many properties with other path finding tools.

C. Path finding in weighted networks

In [31, 32], Didier Croes presented a path finding approach that avoids highly connected com-
pounds by assigning weights to the nodes of the metabolic network. The weights are assigned
such that sparsely connected compounds are preferentially traversed by the path finding algo-
rithm. More precisely, each compound receives a weight equivalent to its degree, that is to its
number of incoming and outgoing arcs. Reactions receive a weight of one. The backtrack-
ing algorithm developed by Fabian Couche [29] enumerates the lightest paths in the weighted
network. Path finding in weighted networks can identify relevant metabolic pathways without
the need of compound exclusion or compound structures.

In addition, Didier Croes compared the performance of the weighted network to a filtered
network (where 36 highly connected compounds were removed) and to an untreated "raw"
network. The evaluation was carried out on metabolic networks constructed from KEGG and
EcoCyc [90] (which is a part of BioCyc) and proceeded as follows: First, a pathway was
predicted given the start and end reaction of a linearized reference pathway. Then, the path
finding accuracy was computed by comparing the node sets of the predicted and the reference
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pathway. This procedure was repeated on 56 pathways from aMAZE [101] and 104 pathways
from EcoCyc. For both, KEGG and EcoCyc, the weighted network clearly outperformed the
filtered and the raw network.

A path finding tool accompanied the evaluation (PathFinding, [31]). This tool is no longer
available, but is listed in tables 1.6 and 1.7 because it is the predecessor of the Metabolic
Pathfinder tool developed during this thesis.

Didier Croes’ work was the starting point for this thesis, which owes not only the use of
a weight policy to him but also ideas on path finding accuracy measurement and metabolic
network construction. In addition, Didier Croes inspired the improved path finding approach
presented in [54].

D. Path finding considering compound structure
Faced with the hub compound problem, many authors developed different solutions that all
relied on the idea of taking the structure of compounds into account.

As mentioned in 1.7.2, Arita introduced the idea to trace atoms through metabolic networks
in silico [5] and developed a path finding tool (ARM, atomic reconstruction of metabolism)
based on this idea [6, 7]. Afom tracing proceeds as follows: For each reaction in the metabolic
network, each of its substrates is paired with each of its products. For each substrate-product
pair, the structures are mapped such that corresponding atom positions can be identified. To
do so computationally means to solve the maximum common subgraph problem, which is
NP-hard. Arita developed an efficient heuristic, which minimizes breakage and formation of
chemical bonds [5, 6]. In [19], this heuristic is combined with maximal partial injections,
which allow to find reactions that transfer a maximal number of atoms. Other authors do not
trace atoms, but instead compute overall compound similarities. The compound structure is
first reduced to a descriptor, which is either a vector in a chemical state space [112] or a string
generated with dedicated software [138]. In a second step, a distance measure between these
descriptors is introduced, which allows to search for paths that maximize compound similarity.

Atom tracing considers the two-dimensional structure of compounds, whereas compound
structure descriptors simplify compound structure further to one dimension, allowing for
quicker search and comparison. In the absence of a comparative evaluation of tools based
on two-dimensional compound structure (such as ARM) or one-dimensional compound struc-
ture description (such as Pathway Hunter Tool [138]), it is not clear whether a simplification
from two to one dimension means a loss of path finding accuracy.

With the RPAIR database, manually compiled reactant pair mappings became available
[97, 96]. Each of these reactant pairs has a role assigned to it, such as main ("main changes
on substrates" [96]) or trans ("focused on transferred groups for transferases" [96]). Table 1.8
lists all such roles as defined in [96].

With these reactant pairs at hand, it is possible to identify the main and side compounds of
a reaction. For instance, a naive algorithm could cross the reaction shown in Figure 1.4 from
D-glucose to ADP or from ATP to D-glucose-6-phosphate. An informed algorithm taking
into account the RPAIR annotation will avoid these irrelevant paths, because the pair ATP/D-
glucose-6-phosphate has the role trans instead of main and the pair D-glucose/ADP does not
even exist (since no atoms are transfered between these two compounds). Figure 1.19 gives
an illustration of this example.
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K[GG REACTION: R00299 A

Entry R00299 Reaction

Name ATP:D-glucose 6-phosphotransferase
Definition|ATP + D-Glucose <=> ADP + D-Glucose 6-phosphate
Equation (C00002 + C00031 <=> C00008 + C00092

_A_O._OH HO F" Q
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OH HO [ OH
OH
n A A ; =N ~ ~ =N
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HO HO HO & %o N HO HO & “on M
RPair RP: RP00003 C00002_C00008 main

RP: RP00060 (C00031_C00092 main
RP: RP08556 C00002_C00092 trans

Pathway PATH: rn00521 Streptomycin biosynthesis
Enzyme 2.7.1.1 2.7.1.2
Orthology (KO: K00844 hexokinase [EC:2.7.1.1

]
KO: K00845 glucokinase [EC:2.7.1.2]
KO: K12407 glucokinase [EC:2.7.1.2])
R00299 B
ATP .| RP00003 _~~ ADP
(C00002) (main) > \_(C00008)
S
RP08556
(trans) ~
D-Glucose 6-
D-Glucose RP00060 > phosphate
(C00031) ~a|  (main) (C00092)

Figure 1.19: Figure A shows the reactant pair decomposition of KEGG reaction R00299, whereas
Figure B depicts more clearly the relationships between the reactant pairs and their substrates and
products. The reaction can be decomposed into three reaction pairs, two main reactant pairs reflecting
the transfer of large atom groups (ATP/ADP and D-glucose/D-glucose 6-phosphate) and one trans
reactant pair (ATP/D-glucose 6-phosphate), which describes the transfer of the phosphate group. These
three reactant pairs correspond to the three atom groups shown in Figure 1.14 for the same reaction.
Importantly, there is no reactant pair between D-glucose and ADP, since no atoms are transferred
between these two compounds. Note also that each reactant pair has only one substrate and one product.
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Table 1.8: Roles of reactant pairs as defined in [96]

Reactant pair role

Definition of role ‘

main main changes on substrates

trans changes on cofactors for
oxidoreductases

cofac transferred groups for
transferases

ligase consumption of nucleoside
triphosphates for ligases

leave separation or addition
of inorganic compounds
for such enzymes as lyases
and hydrolases

As a consequence of the reaction-specific separation between main and side compounds,
the KEGG RPAIR network features top ten hub compounds that differ from those of
the KEGG LIGAND network (see Table 1.2). For instance, the typical side compounds
NAD(P)*/NAD(P)H disappear from the KEGG RPAIR hub compound list, because the num-
ber of reactant pairs involving them is much smaller than the number of reactions involving
them. In contrast to KEGG LIGAND and MetaCyc, highly connected compounds of the cen-
tral metabolism (e.g. pyruvate and glutamate) appear on the KEGG RPAIR list. They are
not listed for KEGG LIGAND and MetaCyc, because they are less connected than the side
compounds.

The path finding tool Rahnuma makes use of the RPAIR annotations [113]. ARM [6] is an
example for a path finding tool that traces atoms. Moreover, ARM is currently the only path
finding on-line tool that visualizes atom tracings.

E. Path finding in weighted networks integrating compound structure
Recently, two approaches have been published that combine weighted networks with com-
pound structures [54, 18]. Both make use of the weight policies introduced in [31, 32].
During this thesis one of these approaches was developed, which is presented in detail in
chapter 2. Briefly, the approach consists in the construction of weighted KEGG RPAIR net-
works, which are compared to KEGG LIGAND networks and unweighted KEGG RPAIR net-
works [54]. In [18], a new procedure to compute atom mappings is presented, which is based
on a minimum cut algorithm acting on SMILES. SMILES (Simplified Molecular Input Line
Entry System) are strings that describe compound structure, including stereoisomers [168]
(see Figure 1.3). If several atom mappings are possible for a reaction, the one that occurs most
frequently in the reaction’s EC cluster is selected. The EC cluster is the set of all EC numbers
sharing the first three digits with the reaction’s EC number and thus its mechanism. From
the atom mappings, a directed network is constructed where each node represents a substrate-
product pair (equivalent to a reactant pair of KEGG RPAIR) and where each arc represents
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a compound shared by two substrate-product pairs. The performance of this network under
various weight policies was assessed.

For both approaches, thorough evaluation showed that a weighted network penalizing hub
compounds and integrating compound structure reached the highest path finding accuracy.

Both approaches are available as on-line tools: Metabolic Pathfinder [54]
(http://rsat.ulb.ac.be/neat/) and MetaRoute [17] (http://www-bs2.informatik.
uni-tuebingen.de/services/MetaRoute/). Metabolic Pathfinder is currently the only
path finding on-line tool that accepts reactions as source and target, whereas MetaRoute is the
only path finding on-line tool that offers tracing of four atom types.

Stoichiometric pathway prediction

Stoichiometric pathway prediction constraints the solution space further than path finding by
only accepting stoichiometrically balanced paths. Thus, in contrast to path finding, this path-
way prediction approach can also predict stoichiometric coefficients.

A. Early contributions

In one of the first articles on computational metabolic pathway prediction, a search algorithm
written in LISP acts on a database including 100 compounds and 70 enzymes [148]. For each
compound, the elements it carries are listed (e.g. carbon, nitrogen, ...), which facilitate bal-
ances on carbon, phosphorus, sulfur, and nitrogen. Energy carriers such as ATP and electron
donors such as NADPH are freely available, all other compounds involved in a pathway have
to be synthesized by it. A pathway can be predicted by defining an "initial state" (equivalent to
a source compound) and by applying enzyme "operators" on it until a a "target state" (a target
compound) has been reached. An enzyme and its reaction are represented as a single entity,
which is annotated with the EC number, the physiological reaction direction, the reactants
with their stoichiometric coefficients, the enzyme activators, inhibitors and known pathways.
The system was tested by providing glucose-6-phosphate and pyruvate as seeds, which yielded
the Embden-Meyerhof-Parnas (that is glycolysis), Entner-Doudoroff, and pentose phosphate
pathways.

Some years later, Mavrovouniotis [111] extended this work by introducing new constraints
to the system, which still consists of a metabolic database (with 250 reactions and 400 com-
pounds) and a search algorithm written in LISP. The constraints include those on the ther-
modynamic feasibility of a reaction, i.e. only reactions are allowed that can proceed in the
predicted direction under physiological conditions. As described in section 1.3.2, the direc-
tion of a reaction depends on its Gibbs free energy change. Mavrovouniotis developed a group
contribution method to calculate this quantity. Other constraints forbid or require selected
compounds and reactions to occur in predicted pathways and limit the pathway size. Hub
compounds are treated as in [148] as freely available compounds, which do not need to be
balanced or synthesized. Mavrovouniotis analyzed the production of lysine from glucose and
ammonia as a case study. He identified kinetic bottlenecks given reactant concentrations and
enzyme rates and suggested alternative pathways to circumvent these bottlenecks. He also
introduced the lumping of a linear sequence of reactions into one reaction and the ranking of
pathways by yield.
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B. Elementary mode analysis

ELementary mode analysis does not take two seed nodes and can therefore not be considered
as a two-end pathway prediction technique. But since it has been compared with path finding
[38, 132], it will be treated here.

The definition of elementary modes (EM) is given in section 1.7.5. In the following, the
computation of EMs is summarized (see e.g. [129, 162]).

The development of compound concentrations over time can be described by a set of linear
differential equations involving the reaction rates and the stoichiometry of compounds partic-
ipating in a reaction. These equations can be written in a compact form using matrices and
vectors:

— =8 (1.2)

where v is the vector of reaction rates (also called fluxes), S the stoichiometric matrix and C
the vector of compound concentrations. Each row of the stoichiometric matrix represents a
compound and each column a reaction, whereas each entry is the stoichiometric coefficient of
the ith compound in the jth reaction.

The basic assumption of EM analysis (as well as flux balance analysis and metabolic flux
analysis) is that due to the fast turn-over of compounds, metabolism can be considered to be
at steady state (chemostat) or at pseudo steady state (batch culture) at relevant time scales.
Thus, compound concentrations do not change over time and consequently the left-hand side
of equation 1.2 can be set to zero:

Sxv=0 (1.3)

With this simplification it is possible to compute the solutions that satisfy equation 1.3 and
some additional constraints concerning reaction directionality. Geometrically, the solution
space forms a convex polyhedral cone. Each solution is a vector of fluxes. EMs are special
solution vectors satisfying an additional non-decomposability constraint, which roughly states
that no reaction can be removed from an EM without disturbing it as a functional unit [125].
EMs can be computed with tools such as METATOOL [166] or efmtool [157].

In EM analysis, compounds are classified into internal compounds, which need to be bal-
anced and external compounds, which are assumed to be freely available and are therefore not
balanced. Likewise, reactions are classified into internal reactions, which take place inside
the system and exchange reactions, which cross system borders (e.g. transport). Metabolic
networks need to meet certain requirements in order to apply EM analysis on them: for each
reaction, all concerned elements (i.e. atoms and ions) and their charges need to be balanced.
Parallel pathways, null cycles, dead ends or erroneous exchange reactions need to be identi-
fied and removed. In order to simplify the metabolic network, linear sequences of reactions
are lumped into one reaction, e.g. the last four steps of glycolysis in [38]. Metabolic net-
works are usually small and carefully constructed by hand. However, recent advances in EM
computation allow their application to genome-scale metabolic networks [85, 37, 157].

De Figueiredo et al. compared EM analysis to path finding tools (namely PathFinder and
Pathway Hunter Tool) [38]. In [53], we pointed out weaknesses of this comparison and in ad-
dition enumerate advantages and disadvantages of EM analysis and path finding for metabolic
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pathway prediction. This discussion can be found in chapter 5. A comparison of both ap-
proaches has also been published in [132].

The solution space of equation 1.3 is spanned by flux vectors called extreme pathways (e.g.
[125]). Since the extreme pathways were apparently not yet employed for metabolic pathway
prediction, they will not be further discussed here.

C. Other stoichiometric approaches

In [11], a stoichiometric approach is presented that combines constraints with an objective
function. Thus, in contrast to EM analysis, the solution space is narrowed to one solution,
which optimizes the objective function. The objective function is a mixture of two objectives:
(1) minimize the number of reactions in a pathway and (2) maximize the ATP production.

Compounds are classified as low presence and high presence compounds depending on the
number of reactions they are involved in. As the external compounds in EM analysis, "high
presence" compounds do not need to be balanced.

Constraints include those for low presence compound balancing and for mutual exclusion
of the two directions of one reaction. In particular, a number of constraints concerns cycles;
e.g. cycles involving more than one high presence compound are forbidden.

With these objective function and constraints, a number of known pathways could be recov-
ered from the Escherichia coli metabolic network, among others glycolysis.

In a second article [133], this constraint-based pathway prediction is further refined:

e Prediction of more than one paths (K paths) between a source and a sink allows to deal
with branched pathways.

e "Low presence" and "high presence" compounds are no longer manually assigned be-
forehand, but automatically during pathway prediction.

e Another optimization function is introduced, which minimizes the number of unbal-
anced main compounds and maximizes the specificity of the pathway. The pathway
specificity depends on its number of specific compounds. A compound is the more
specific the less it is involved in other reactions.

e Additional constraints for the treatment of highly connected compounds are introduced,
e.g. inorganic compounds or high presence compounds are not allowed to occur in a
path if source and sink can be connected by other compounds.

Pathway prediction has been evaluated on 40 reference pathways from Escherichia coli, 36
of which were exactly recovered [133].

Rule-based pathway prediction

Rule-based pathway prediction consists in the iterative application of transition rules on a set
of compounds. It may proceed as one-end prediction (e.g. to propose a number of different
degradation pathways for one query compound) or two-end prediction (after a desired target
compound was obtained, the iterative application of rules is stopped). The rules are defined
such that hub compounds are avoided.
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Rules describe generalized reactions, which cover a set of specific reactions. Usually, a
rule applies to a certain sub-structure (e.g. functional group) of a compound class, e.g. the
rule "primary Alcohol converted to Aldehyde" (rule identifier btO0O0O1 in UM-BBD [50]) is
applicable to all compounds with an alcoholic group.

Rules are often manually annotated by experts (e.g. in UM-PPS [50], METEOR [66] or
MetabolExpert [35]) or automatically derived by generalizing reactions (e.g. [80, 69]).

In order to deal with combinatorial explosion, rules are ranked with the help of expert
knowledge (e.g. [50]) or by machine learning approaches (e.g. [57]).

A number of rule-based tools is available, which are specialized on different metabolic
networks. For example, METEOR and MetabolExpert are commercial expert systems tailored
to drug metabolism, whereas CATABOL (commercial) and UM-PPS (freely available) are
designed to predict biodegradation pathways.

In contrast to the path finding and stoichiometric approaches, the metabolic fate of com-
pounds not yet present in a database can be predicted, since rules apply to compound sub-
structures and not to the whole compound. Most rule-based pathway prediction tools are com-
mercialized, probably because carefully designed rules allow them to reach a high positive
predictive value. However, without a systematic evaluation, it is unclear whether these tools
also reach a high accuracy, because overly restrictive rules might decrease their sensitivity.

1.10.4 Multiple-end metabolic pathway prediction

In the previous section, metabolic pathway discovery with two seeds or seed sets was pre-
sented, where seeds act as source and target compound(s) and/or reaction(s) respectively. A
more ambitious goal is the prediction of a metabolic pathway from a seed group (or several
seed groups). For this, an algorithm is needed that extracts a relevant sub-network from the
input network given the seed nodes. Metabolic pathway prediction from several seeds has re-
ceived much less attention than prediction given two seeds. Therefore, sub-network extraction
techniques applied to other biological networks will be discussed here as well.

There is a clear distinction between the inference of a network from microarray or other data
sets (as in [171]) and the extraction of a sub-network from a network. The goal of the former
approach is to predict (at least partially) a network from high-throughput data (e.g. regulatory
networks from gene expression profiles), whereas the goal of the latter approach is to predict a
pathway from a network that is already known. In sub-network extraction, the network can be
weighted with high-througput data, but these weights do not affect the topology of the network
itself.

The development of multiple-seed pathway extraction techniques has been driven by the
need to interpret high-troughput data sets. Zien et al. [177] were among the first to advance a
technique that instead of mapping genes on pre-defined pathways enumerated possible path-
ways in a metabolic network and selected the pathway that fitted best the given gene expression
data. However, their work was restricted to two-end pathway prediction.

Tables 1.9 and 1.10 summarize a selection of different multiple-seed sub-network extraction
approaches developed during the last years. These approaches may be classified into global
and local approaches according to seed node treatment. Global approaches ([77, 139, 119])
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select nodes in the network during execution of the algorithm such that the resulting sub-
network optimizes a criterium (usually sub-network weight) whereas local approaches receive
a set of seed nodes beforehand which are then connected ([147, 40, 3, 4]). However, seed-node
specific sub-networks can also be extracted with global approaches, by assigning appropriate
weights to the network nodes (low weights to the seeds, high weights to all other nodes).

Sub-network extraction has been applied to protein-protein and protein-DNA interaction
networks [77, 147, 40], metabolic networks [119, 3, 4] and networks integrating both of the
former [139].

Usually, sub-networks are extracted from weighted networks. Often, the weights represent
scores derived from one or several high-throughput experiments (microarray data in [77, 40]
or enzyme levels in [119]). This thesis focusses on sub-network extraction and does not make
use of high-throughput data to weight the networks. However, since the weight assignment
step is clearly separated from the sub-network extraction step, the procedures applied in this
thesis can be easily combined with more sophisticated weight policies.

Many authors developed their own heuristics to solve the sub-network extraction problem
[77, 139, 119, 3, 4]. Others extract sub-networks with Steiner tree algorithms [147, 40]. As
described in section 9.1, a Steiner tree algorithm searches for the sub-network that connects
the given seed nodes in the given network with minimal weight. This problem is known
to be NP-hard, which means, roughly stated, that it cannot be solved in polynomial time.
Nevertheless, some Steiner tree algorithms have been published that solve the problem exactly
(though not in polynomial time). For instance, the Dreyfus-Wagner algorithm [45] is applied
with modifications in [147] and Ljubi¢’s exact solution [105] is applied in [40].

Most sub-network extraction techniques are not accompanied by web servers or ready-to-
use applications, with the exception of [77] (Cytoscape plugin) and [3] (two web servers).
In addition, only few approaches have been evaluated ([139, 40]). Thus, the evaluation pre-
sented in [55] and the pathway prediction web server developed during this thesis are useful
contributions to the prediction of metabolic pathways from multiple seeds.
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2 Two-end metabolic pathway
prediction

Presented article:

K. Faust, D. Croes and J. van Helden

Metabolic Pathfinding Using RPAIR Annotation
Journal of Molecular Biology, vol. 388, pp. 390-414, 2009.

2.1 Introduction

The first step towards the prediction of metabolic pathways from multiple seeds is the increase
of two-end path finding accuracy. As discussed in section 1.10.3, appropriate treatment of hub
compounds (i.e. compounds involved in a large number of reactions) is crucial to reach high
prediction accuracies. The key idea of the article presented here is to use pre-defined substrate-
product pairs from the RPAIR database [97] in order to avoid side compounds.

Reactant pairs (RPAIRs) are manually annotated substrate-product pairs that map each sub-
strate of a reaction onto its structurally most similar product (see Figure 1.19). RPAIRs are
classified into main, trans, cofac, ligase or leave RPAIRs according to their role in the reaction
(see Table 1.8).

There are different ways in which reactant pairs can be integrated into path finding. We
therefore assessed the impact of a number of different parameters on path finding accuracy,
namely network type, network directionality, RPAIR role filtering, compound filtering and
different weight policies. Table 2.1 describes each of these parameters.

2.2 Contribution

D. Croes conceived the idea of integrating RPAIRS to improve path finding. I performed the
evaluation, analyzed the study cases and wrote the article. J. van Helden supervised the work
and substantially revised the article.

2.3 Methods

Three networks were constructed: one from KEGG LIGAND (termed reaction network) and
two from KEGG RPAIR (termed RPAIR and reaction-specific RPAIR network). The reference
pathways were taken from aMAZE [101]. Of these, 25 are branched and seven contain cycles.
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Table 2.1: Table of parameters that were assessed during the evaluation of path finding

Parameter | Description
Network Network consisting of all reactions
type and compounds in KEGG LIGAND versus
network consisting of all reactant pairs
and compounds in KEGG RPAIR
Network Network is directed (where each
directionality | reaction is represented by two
direction nodes) or undirected
RPAIR role RPAIRS of a specific role
filtering (such as cofac, ligase or leave) are
removed from the RPAIR network
Compound Highly connected compounds
filtering (such as ATP or H;O) are
removed from the network
Weight policy | Four weight policies were tested:
1) unit (all nodes receive a weight of one)
2) degree (all compound nodes
receive a weight equal to their degree)
3) RPAIR weight (all reactant pairs
receive a role-specific weight)
4) RPAIR weight and degree (combination of
weight policies 2 and 3)




Path finding cannot predict pathways having more than two terminal nodes (i.e. nodes without
incoming or outgoing arcs), because it accepts only two seed nodes. It was therefore necessary
to linearize the reference pathways, i.e. to extract their linear parts. Details on the reference
pathways and their treatment are listed in section 9.2.

To evaluate the accuracy of two-end pathway prediction, the start and end reaction of a
reference pathway are given to the path finding algorithm, which is based on REA [83]. All
first-ranked paths (i.e. paths of equal weight) are merged to form the predicted pathway. The
path finding accuracy is then calculated on the basis of non-seed node overlap between the
predicted and the reference pathway (see section 9.2).

Path finding was carried out under various conditions for a set of 55 reference pathways
from three organisms.

2.4 Results

With the best-performing parameter combination, an overall accuracy of 83% was reached for
the 55 reference pathways (93% for 32 E. coli pathways, 66% for 11 S. cerevsiae pathways
and 70% for H. sapiens pathways).

The assessment of parameter impact revealed that:

e In agreement with [31, 32], a weighted metabolic network performs better than an un-
weighted or filtered network (where hub compounds are removed).

e The RPAIR network outperforms the reaction network.

e Directed reaction networks perform better than undirected ones, because they prevent
the path finding algorithm to go from substrate to substrate or from product to product.
In contrast, for RPAIR networks, there is no difference between directed and undirected

networks, since each reactant pair has only one substrate and one product.

e Filtering of RPAIR classes does not increase the path finding accuracy, because some
reference pathways contain other than main RPAIRs.

e Weighting of RPAIRSs only increases path finding accuracy in the absence of compound
weights.

2.5 Conclusion

Our evaluation has shown that the combination of reactant pairs with a weight policy penal-
izing hub compounds yielded the highest path finding accuracy. Thus, metabolic pathway
prediction accuracy can be increased by taking into account RPAIR annotations.
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takes the chemical structure of reactants into account in order to
differentiate between side and main compounds of a reaction. Thanks to
an intensive annotation effort at KEGG, decompositions of reactions into
reactant pairs (RPAIR) categorized by their role (main, trans, cofac, ligase,
and leave) are now available.

The goal of this article is to evaluate the impact of RPAIR data on
pathfinding in metabolic networks. To this end, we measure the impact of
different parameters concerning the construction of the metabolic network:
mapping of reactions and reactant pairs onto a graph, use of selected
categories of reactant pairs, weighting schemes for compounds and
reactions, removal of highly connected metabolites, and reaction direction-
ality. In total, we tested 104 combinations of parameters and identified their
optimal values for pathfinding on the basis of 55 reference pathways from
three organisms.

The best-performing metabolic network combines the biochemical
knowledge encoded by KEGG RPAIR with a weighting scheme penalizing
highly connected compounds. With this network, we could recover
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(12 pathways). Our pathfinding approach is available as part of the
Network Analysis Tools.

Received 9 November 2008;
received in revised form

25 February 2009;

accepted 3 March 2009
Available online

10 March 2009

© 2009 Elsevier Ltd. All rights reserved.

Keywords: pathfinding; KEGG RPAIR; metabolic network; pathfinding
Edited by M. Sternberg evaluation; metabolic pathways

Introduction and so on). Enzyme grouping into pathways was
defined on the basis of mutant phenotypes (e.g.,

In biochemical textbooks' and in databases such ~ Methionine auxotrophy) and, with progress in bio-
as KEGG?® or BioCyc,*® metabolic information is chemistry, detailed successions of reactions could be
represented in the form of generic or organism- established. Such biochemical analyses revealed that

specific metabolic maps or pathways. Historically, ~ different organisms can use alternative pathways to
the characterization of metabolic pathways relied on PTOdUC(? or ut1.11ze' the same m{)lecgles. For.example/
a very few model organisms (Escherichia coli, E. coli, L-lysine is produced in nine reactions from

Salmonella, Saccharomyces cerevisine, mouse, human, L-aspartate, whereas in S. cerevisiae, it is produced in
eight reactions from 2-oxoglutarate. The documen-

ted examples of alternative pathways probably
reflect a tiny part of the huge diversity of bioche-

*Corresponding author. E-mail address: kfaust@ulb.ac.be. mical pathways.
Abbreviations used: Sn, sensitivity; PPV, positive The large size of the biochemical pathway space is
predictive value; Acc, geometric accuracy. also apparent from calculations performed by
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Kueffner et al., who constructed a PETRI net from
several metabolic databases and enumerated all
paths between glucose and pyruvate.® Without
further constraints, they obtained around 500,000
paths. Even after application of a number of
constraints, as many as 170 pathways connecting
glucose to pyruvate remained.

This demonstrates that detecting de novo path-
ways by exhaustive enumeration of paths will
return many false positives, whereas relying on
previous knowledge will overlook a large number of
valid pathways. Automated metabolic pathfinding
approaches can assist biochemists by proposing a
reasonable number of hypothetic pathways ranked
by potential relevance, which may then be filtered
and modified on the basis of biochemical knowledge
and validated experimentally.

Metabolic pathfinding can be applied to predict
pathways between enzymes encoded by genes that
are assumed to be functionally related (on the basis
of coexpression, operon organization, phylogenetic
profiles, gene fusion, and so on). This is especially
useful in metabolic reconstruction, whose goal is to
decipher organism-specific metabolism from gen-
ome data. Reconstruction strategies can be classified
according to their extent of automation: In the
absence of automation, data obtained from meta-
bolic literature, expert knowledge, or databases are
manually assembled into a metabolic network.*
Once a set of pathways is known, the reconstruction
procedure can be automated, using known path-
ways as template. The reconstructlon procedure can
be entirely automated®'* or can rely on a computer-
based a551gnment refined by manual annotation as
in “Tier 2” BioCyc databases.'” Building a network
from known pathways alone suffers from a serious
limitation: The reconstructed network is restricted to
previously characterized pathways. This does not
allow the discovery of new alternatives. This limi-
tation becomes apparent when reconstructed path-
ways contain gaps (i.e., reactions not catalyzed by
any enzyme annotated in the query genome). A gap
may occur because (1) the pathway is absent from
the organism of interest and reactions identified for
it belong to other pathways; (2) the enzyme-coding
gene has not yet been identified in the query
genome; (3) the organism uses a variant of the
pathway that bypasses the gap (reasons 1-3 are
listed in Paley and Karp'®); or (4) the reaction is
spontaneous in this organism. Metabolic pathfind-
ing helps to address this problem: On one hand, it
can suggest alternatives to the pathway in question
and, on the other hand, it can be apphed to identify
and rank candidate gap filler enzymes.'

Metabolic pathfinding relies on a metabolic net-
work (equivalently called “metabolic graph”) where
compounds and reactions are nodes linked by edges
representing substrate/product relationships.58:19
Various algorithms can be used to find one (shortest
pathfinding) or several (k-shortest pathfinding)
paths between a given pair of start and end nodes.
Unfortunately, the shortest paths found in a raw
metabolic network generally do not correspond to

relevant biochemical pathways.'"?**" Indeed, a
major problem of metabolic pathfinding is the
presence of compounds involved in a high number
of reactions. Typically, these compounds are cofac-
tors (e.g.,, NADP*/NADPH and NAD*/NADH),
small inorganic molecules (e.g., H,O, O,, and COy),
or energy carriers (e.g., ATP and ADP). The shortest
pathfinding algorithms will use such highly con-
nected compounds as shortcuts and will thus infer
irrelevant pathways containing cofactors or energy
carriers as intermediates (Fig. 1a).

Failure to deal with highly connected compounds
will bias any topological analysis of metabolic
networks that is based on pathfinding. For instance,
Jeong et al. described a “small-world” property of
metabolic networks, which states that each com-
pound in the network can be reached from other
compounds in a small number of steps.'® However,
the “small-world” property was questioned by
several authors because most of these short paths
result from shortcuts linking two reactions via some
irrelevant compounds. 11,2022

A number of strategies have been devised to over-
come the problem of highly connected compounds.

The concept of “pool compounds” has been
introduced. Compounds in the pool are freely
available to a reaction in the pathway, whereas
other compounds have to be produced or consumed
by the pathway. This concept is especially applied in
flux balance analysis where pool compounds are
called external metabolites, which do not need to be
balanced (e.g., Schuster et al.,”® Teusink et al.** and
Edwards and Palsson®).

Karp and Paley defined “main compounds” as
those shared between subsequent reaction steps of a
pathway They form the “backbone” of that
pathway.”® In contrast, “side compounds” are not
involved in subsequent reaction steps.

Various authors!'®1922 have excluded a selected
list of compounds from the metabolic network
under study. However, since a good definition of
pool compounds is missing, it is unclear which
compounds are to be removed. In addition, removal
of those compounds generally avoids irrelevant
shortcuts, but occasionally prevents the finding of
some pathways in which they are used as inter-
mediates (e.g., ADP is a side compound in most
pathways, but a main compound for the de novo
biosynthesis of purine nucleotides).

Another strategy is to take into account the
chemical structure of the compounds in order to
trace, for each reaction, the transfer of atom groups
between substrates and products.20-27.28 This
assumes a reaction-specific definition of “main”
and “side” substrates/products. Arita’s concept
defines “a pathway from X to Y [as] a sequence of
biochemical reactions through which at least one
carbon in X reaches Y.” This strategy of atom
mapping and tracing introduced by Arita was
applied in modified forms for pathfinding.”” > It
requires knowledge of the structure of each com-
pound and a tedious annotation of atom transfers
within each reaction.
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Fig. 1. Tllustration of the relevance of RPAIR annotations. (a) Example showing that paths traversing pool metabolites often result in biochemically invalid pathways. The
shortest path found in the unweighted reaction graph erroneously suggests that L-methionine can be produced from L-aspartate in three reaction steps via ADP and
tetrahydrofolate (rectangles representing seed nodes have a border in boldface). (b) RPAIR composition of selected reactions used in the path of (a). Reaction R00480 is divided into
three reactant pairs: The two reactant pairs labeled as “main” go from ATP to ADP, or from L-aspartate to 4-phospho-L-aspartate. In reaction R00943, the main reactant pairs
connect tetrahydrofolate, formate, and 10-formyltetrahydrofolate. Note that there are no reactant pairs from L-aspartate to ADP or from ADP to tetrahydrofolate in these reactions,
so that path (a) cannot be formed. (c) The shortest path between L-aspartate and L-methionine found in the unweighted RPAIR graph. (d) The shortest path between L-aspartate
and L-methionine found in the weighted RPAIR graph.
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Pool compounds can also be avoided by defining
a set of rules,” assigned by experts on the basis of
compound structure and biochemical literature, in
order to enumerate all conversions allowed for each
compound. The drawback of this approach is that
the rule set might be incomplete or too restrictive to
allow discovery of new pathways.

Kotera et al. introduced the concept of reactant
pairs (RPAIRs), defined as “pairs of compounds that
have atoms or atom groups in common on two sides
of a reaction.”*** RPAIR thus establishes pairwise
relationships between one substrate and one pro-
duct, taking into account the respective roles of these
compounds in the reaction. Accordingly, reactant
pairs are grouped into the following classes: main,
trans, cofac, ligase, and leave. For instance, a cofac
reactant pair couples a substrate cofactor with a
product cofactor (ie., A00002 pairs NADH with
NAD™). Figure 1 shows typical examples of decom-
position of reactions (Fig. 1a) into reactant pairs
(Fig. 1b). This figure also demonstrates that bio-
chemically irrelevant connections between ATP/ADP
and other compounds are avoided in the RPAIR
graph (Fig. 1c and d) simply because corresponding
reactant pairs are absent in the RPAIR database. Note
that the same reactant pair may take on different roles
in different reactions (i.e., the ATP/orthophosphate
reactant pair belonging to all five classes).

Oh et al. combined RPAIRs and structural com-
parisons to predict biodegradation pathways by
iteratively matching a compound with its most
similar partner in a library of reactant pairs.*

In a previous article, we introduced a strategy for
predicting metabolic pathways based on k-shortest
pathfinding in a weighted graph.”” By default, each
compound is assigned a weight equal to its degree
(“connectivity”) in the metabolic graph. The weight is
then used as a penalty for pathfinding, leading to the
concept of lightest pathfinding (as opposed to shortest).
Thus, the more highly connected is a compound, the
less likely it is to appear in an inferred pathway.

An important issue is the protocol used to assess
the reliability of a pathway discovery method.
Indeed, several approaches were tested on only a
few study cases (e.g., McShan et al.”’ Rahman et al.,*!
and de Figueiredo et al®), or conclusions were
drawn from global topological parameters without
any attempt to compare discovered paths to anno-
tated pathways (e.g., Jeong et al.'®). In contrast, our
strategy to penalize compounds according to their
degree was supported by an evaluation on several
tens of pathways.”'

With the availability of the KEGG RPAIR data-
base, we can now integrate manually compiled
knowledge on atom flow as stored in the reactant
pairs into pathfinding. In this article, we quantify
the impact of KEGG RPAIR on pathfinding accuracy
by carrying out a careful validation of known
pathways from three organisms (E. coli, S. cerevisiae,
and Homo sapiens). In addition, we evaluate the
effects of parameters linked to the RPAIR database
[e.g., the filtering and weighting of reactant pairs
according to their class (main, trans, cofac, ligase, or

leave)]. In order to compare results obtained with
KEGG RPAIR to those obtained from our previous
method, we also measure the impact of different
weighting schemes and the filtering of pool meta-
bolites on pathfinding accuracy.

We added the new version of the metabolic
pathfinding tool and the best-performing metabolic
networks to the Network Analysis Tools Web server.3

Results and Discussion

Graph construction and evaluation

We summarize here the main features of the
metabolic graphs and pathways used for evaluation.
The detailed description can be found in Materials
and Methods.

We constructed three bipartite metabolic graphs
from KEGG/LIGAND. The first one, called reaction
graph, is built from all compounds and reactions, in
the same way as in our previous work.”" The second
graph, named RPAIR graph, consists of all reactant
pairs listed in KEGG RPAIR and their associated
compounds. The third graph, called reaction-specific
RPAIR graph, is a variant of the RPAIR graph, where
each reactant pair instantiates one separate node for
each reaction in which it is involved. Reactant pairs
associated with the same reaction are mutually
exclusive.

The performance of these graphs was evaluated
on a set of 55 known reference pathways from three
organisms (E. coli, S. cerevisiae, and H. sapiens). For
each of the reference pathways, we measured how
well it could be recovered from the metabolic graph
given its start and end reactions alone.

This evaluation was repeated for each of the three
graphs and for a variety of parameter values. The
tested parameters included compound weighting
scheme, reactant pair weighting scheme, graph
directionality, compound filtering, and reactant pair
filtering.

Study cases

In the following, we discuss three examples that
illustrate the benefits of RPAIR annotations.

Two additional examples (lysine biosynthesis and
proline degradation) demonstrate how pathfinding
can uncover pathways in organism-specific net-
works and suggest alternatives to known metabolic
pathways.

For each graph mentioned in these examples, we
used parameter values yielding the highest path-
finding accuracies in our evaluation.

Aldosterone biosynthesis in humans

Aldosterone biosynthesis (Fig. 2a) in humans pro-
duces the hormone aldosterone from cholesterol.
Aldosterone regulates the absorption of ions in the
kidney.



1.14.15.6
(R02724)

Pregnenolone
(C01953)

1.1.1.145,5.3.3.1
(R02216)

Progesterone
(C00410)

1.14.99.10
(RO2213

11-Deoxycorticosterone
(C03205)

1.14.15.4
(RO3851)

Corticosterone
(C02140)

1.14.15.5
(R03262)

18-Hydroxycorticosterone
(C01124)

R03263

Fig. 2. Inference of the aldosterone biosynthesis pathway in the reaction graph and RPAIR graph. (a) Human aldosterone pathway as annotated in the aMAZE data set. (b) The
lightest path found in the compound-weighted reaction graph. (c) The lightest path found in the compound-weighted RPAIR graph. (d) Reactant pair composition of the first
reaction in the annotated pathway. Note the absence of any reactant pair connecting cholesterol to reduced adrenal ferredoxin. The compound pairs oxygen/water and reduced
adrenal ferredoxin/oxidized adrenal ferredoxin differ by hydrogen atoms and electrons, respectively, which are not covered by KEGG RPAIR. Green, true positives; orange, false

positives; blue, seed nodes.
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With the compound-weighted reaction graph, we
predict a short path (Fig. 2b) that skips a major part
of the reference pathway by going through a side
compound (reduced adrenal ferredoxin). The
degree-based weighting scheme does not deal
well with this compound because it appears in a
very few reactions only (in four reactions as side
compound).

In the RPAIR graph, we correctly recover the
second half of the pathway, but the first half of the
inferred path bypasses progesterone by 21-hydro-
xypregnenolone (Fig. 2c). This difference between
reaction and RPAIR graph is mainly due to the
absence of a reactant pair that couples reduced
adrenal ferredoxin with cholesterol. Figure 2d
depicts the reactant pair composition of the reaction
concerned (R02724) showing that reduced adrenal
ferredoxin and cholesterol do not exchange atoms
according to RPAIR annotation.

(b)

(a) (c)

N-Acetyl-L-glutamate
(C00624)

:/ﬁ-.ﬁucetyl-L-glutamaié\I
AN (C00624) . 2y

NeAcetyl-L-glutamale™
L (Coos24)

Despite its deviation from the annotated pathway
and in contrast to the path found in the reaction
graph, the path obtained from the RPAIR graph
makes sense biochemically. This alternative path-
way to aldosterone is annotated in the correspond-
ing KEGG map (C21—steroid hormone metabolism)
and is also mentioned by Pasqualini as a way to
generate deoxycorticosterone in human placenta.*’

Furthermore, the reference pathway is found in
the RPAIR graph as second-ranked path and in the
reaction graph as fifth-ranked path.

Arginine biosynthesis in E. coli

The arginine biosynthesis pathway produces argi-
nine from glutamate (Fig. 3a). In the compound-
weighted reaction graph (Fig. 3b), a path that directly
connects N-acetyl-L-glutamate to N-acetylornithine
(reaction R02282) is found, bypassing N-acetyl-L-
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Fig. 3. Inference of the arginine biosynthesis pathway

in the reaction graph and RPAIR graph. (a) Arginine

biosynthesis pathway as annotated in the aMAZE data set for E. coli. (b) The lightest path found in the compound-
weighted reaction graph. (c) The lightest path found in the compound-weighted RPAIR graph. (d) RPAIR composition of
reaction R02282, used as a shortcut in (b). This reaction shares a reactant pair (A04458) with the start reaction, which is the
reason for its avoidance in the RPAIR graph. (e) RPAIR composition of reactions R01398 and R00665, which give
alternative connections in (b). Green, true positives; orange, false positives; blue, seed nodes.
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glutamate 5-phosphate and N-acetyl-L-glutamate
5-semialdehyde.

This shortcut is avoided in the RPAIR graph
(Fig. 3c) because the starting reactant pair A04458
excludes all reactant pairs (A02100, A0201, and
A04458) associated with the bypass reaction
(R02282) of Fig. 3b. In Fig. 3d, the reactant pair
composition of the bypass reaction is shown.

In addition, the pathway inferred in the reaction
graph consists of two alternative paths: one con-
necting L-ornithine to L-citrulline via reaction R01398
and another via reaction R00665. Both reactions
differ by their side compounds: In the annotated
reaction R01398, carbamoyl phosphate is added to L-
ornithine by the enzyme carbamoyl transferase. The
alternative reaction R00665 is catalyzed by the
enzyme citrullinase, which hydrolyzes citrulline to
form ornithine, ammoniac, and water. Citrullinase

favors the formation of ornithine from citrulline
more strongly than the reverse. The reactant pair
composition of both reactions is depicted in Fig. 3e.
By default, alternative reactions in inferred path-
ways are counted as false positives. However, in the
RPAIR graph, we can no longer differentiate
between the two reactions. Both share a common
main reactant pair, namely, A00576, which connects
L-ornithine and L-citrulline. This loss of one false
positive in the inferred path contributes to the
higher accuracy reached with the RPAIR graph.

Pyruvate oxidation pathway in E. coli

The first reaction (R03145) of the pyruvate oxida-
tion pathway in E. coli converts pyruvate into
acetate (Fig. 4a) and can be divided into four
reactant pairs (A00473, A02797, A05678, and
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Fig. 4. Inference of the pyruvate
oxidation pathway in the reaction
graph and RPAIR graph. (a) Pyru-
vate oxidation pathway as anno-
tated in the aMAZE data set for E.
coli. (b) The lightest path found in
the compound-weighted reaction
graph. (c) The lightest path found
in the compound-weighted RPAIR
graph. Green, true positives; orange,
false positives; blue, seed nodes.
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A05698). In the reaction graph, the correct path is
missed because instead of following the main
reactant pair A02797, the cofac reactant pair
connecting ferrocytochrome b1 to ferricytochrome
bl is chosen (Fig. 4b). In the RPAIR graph, this
pathway is inferred correctly (Fig. 4c).

Lysine biosynthesis

Metabolic pathfinding can suggest alternative
pathways either by finding multiple paths in a
generic metabolic network (the k-lightest paths) or
by considering the top-ranking paths in different
organism-specific networks. In Croes et al., we
showed that the top-ranking paths connecting L-
aspartate and L-lysine obtained from the generic
compound-weighted reaction network correspond
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to alternative pathways that are valid in different
01‘gar1isms.21 However, without further information,
it is unclear which path might be active in which
organism. Here, we repeated the search in
organism-specific RPAIR networks constructed
from KEGG PATHWAY 46.0 for the three yeast
species S. cerevisiae, Saccharomyces bayanus, and
Schizosaccharomyces pombe, and for the prokaryotes
E. coli, Salmonella typhimurium, and Bacillus subtilis.
For each of the organism-specific networks, we
performed a search between L-aspartate and L-
lysine, as well as a search between acetyl-CoA and
L-lysine (L-aspartate and acetyl-CoA are both
known start compounds for lysine biosynthesis).
Figure 5 displays the paths of first rank obtained for
each organism, grouping together organisms with
identical paths. For E. coli, Sal. typhimurium, and B.
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Fig. 5. Pathfinding results for lysine biosynthesis in organism-specific compound-weighted RPAIR networks.
Organisms for which identical paths were found are grouped together. The search was conducted between L-aspartate
and L-lysine and between acetyl-CoA and L-lysine; the first-ranking paths obtained were then merged. For B. subtilis and
E. coli/ Sal. typhimurium, the complete annotated lysine biosynthesis pathways are covered; for the yeast species, a large
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nodes.
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subtilis, the lysine biosynthesis pathways starting
from L-aspartate are fully covered. For each yeast
species, a large part of the known pathway starting
from acetyl-CoA is found. Note that the Gram-
negative bacteria E. coli and Sal. typhimurium, the
Gram-positive bacterium B. subtilis, and the eukar-
yotes S. cerevisiae, S. bayanus, and Sc. pombe each
employ a different lysine biosynthesis pathway.

Proline degradation

The following study case illustrates how alternatives
to known pathways can be found by enumeration of
paths in a generic metabolic network. The armno acid
L-proline is degraded to L-glutamate. MetaCyc” lists
two known pathways for proline degradation. The
arginine and proline metabolism KEGG map also
suggests two proline degradation pathways: one
connecting L-1-pyrroline-5-carboxylate directly to L-
glutamate and the other going through L-glutamate
5-semialdehyde before reaching L-glutamate. If we

enumerate paths between L-proline and L-glutamate
in the compound-weighted KEGG RPAIR network,
we obtain these pathways as the first-ranked and
second-ranked paths (Fig. 6, paths 1 and 2.1). In
addition, several paths contained neither in MetaCyc
nor in KEGG are returned (Fig. 6, other paths),
suggesting the degradation of proline via D-proline
and aminopentanoate (paths 2.2 and 3.1), via trans-4-
hydroxy-L-proline (path 3.2), and via L-ornithine
(paths 5.1 and 5.2).

Impact of parameter values

So far, we discussed the behavior of pathfinding in
a few illustrative study cases. In order to assess the
generality of our observations, we extend this
analysis to a benchmark collection of 55 pathways
from three model organisms: the bacterium E. coli
(32 pathways), the yeast S. cerevisiae (11 pathways),
and humans (12 pathways). We systematically
tested the impact of six different parameters on
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Fig. 6. Enumeration of proline degradation pathways in the compound-weighted RPAIR network. The top-ranking

paths correspond to the annotated pathways for proline degradation, as listed in MetaCyc (path 1 highlighted with thick
edges) and as visible from the arginine and proline metabolism KEGG map (paths 1 and 2.1). The paths of higher rank

propose alternative pathways for the degradation of L-proline

that are not apparent from the corresponding KEGG map.

Green, RPAIR/compound is part of the arginine and proline metabolism KEGG map; blue, seed nodes. Edge labels: Rank
index of the path(s) to which edge belongs. Paths of equal weights have the same rank index (first digit). The second digit
distinguishes between paths of equal rank (e.g., paths 2.1 and 2.2 both have a weight of 130).
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Table 1. Description of the parameters needed to construct the metabolic graphs

Parameter name Values

Description

Graph type Reaction

RPAIR

Reaction-specific RPAIR

Graph directionality Directed

Undirected
Compound filtering Filtered
Unfiltered
Compound weight Unit

Degree

RPAIR class filtering All

Main

Main + trans

RPAIR weight Unit weight
Class-specific weight
(only applies to RPAIR
and reaction-specific
RPAIR graphs)

Bipartite graph with one node per compound and one node
per reaction

Bipartite graph with one node per compound and one node
per reactant pair

Same as RPAIR, but a separate node is created for each combination
of RPAIR /reaction

Reaction and RPAIR nodes are duplicated in order to represent he
two possible directions (forward and reverse); edges are directed

One node per reaction; undirected edges
36 highly connected compounds removed from the graph®'*®
All compounds present in the graph

Each compound has the same weight (w=1)

Each compound node has a weight equal to its degree
(incoming + outgoing edges)

All LIGAND reactant pairs are present in the graph

The graph only contains reactant pairs classified as
“main” + their substrates/products

The graph only contains reactant pairs classified as “main”
or “trans” + their substrates/products

Each RPAIR node has the same weight (w=1)

Weights are assigned to reactant pairs according to their class as
follows: main=1; trans=5; cofac=10; ligase=15; and leave=20;
if an RPAIR is found with several classifications in different
reactions, we always choose the highest weight

(the least favorable classification)

pathfinding accuracy (see Table 1 for a description
of the parameters). Taking into account some
interdependencies between parameters (e.g., reac-
tion weights only apply to RPAIRs and reaction-
specific RPAIRs), the total number of possible
parameter combinations is 104. For each combina-
tion of parameters, we ran the k-shortest pathfinding
algorithm on each test pathway and measured
sensitivity (Sn), positive predictive value (PPV),
and geometric accuracy (Acc) as described in
Materials and Methods. The analysis of all pathways
with one specific combination of parameters is
referred to as “an experiment.” We thus performed
104 distinct experiments.

Optimal combinations of parameters

Table 2 lists, for some selected experiments, the
Acc averaged over all reference pathways in E. coli,
S. cerevisiae, and H. sapiens, respectively (the com-
plete results of the 104 experiments are available in
Tables S1-54). For all three species tested, the RPAIR
graph, in combination with compound degree
weights, yielded the highest Acc. The average Acc
values reached for the top-ranking parameter com-
bination were 93% for E. coli, 66% for S. cerevisiae,
and 70% for human pathways, and 83% for all the

pathways merged. There are three explanations for
these organism-specific differences in accuracy. First,
there is a selection bias due to the available
annotations. Secondly, the pathway sets have differ-
ent length distributions. For instance, the 12 human
pathways analyzed here have an average length of
14 nodes, whereas the 32 E. coli pathways consist, on
average, of only eight nodes. Thirdly, pathways are
easier to infer if they are less interconnected with the
metabolic network. In our selection, the human
pathways happen to be more specialized (e.g.,
hormone metabolism) than the ones from E. coli
and S. cerevisize. This might be the reason that we
reach a higher average accuracy for the human
pathways compared to the yeast pathways, although
the human pathways are, on average, longer than
the yeast pathways. Despite these organism-specific
differences, the following general trends appear in
the ranking of experiments: Firstly, the 16 top-
ranking combinations of parameters (Table S4) are
always based on pathfinding in the RPAIR graph,
with compound weighting. Among those, unit
RPAIR weights always give better results than
class-specific RPAIR weights. RPAIR class filtering
does not appear to improve the results (the
difference between “all RPAIRs” and “main+trans
RPAIRs” is not significant; Table 3).
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Statistical significance of parameter impact

In order to quantify the impact of each parameter,
we performed a systematic comparison between each
pair of alternative parameter values (e.g., degree versus
unit compound weight), with all other parameters
being equivalent (“experimentwise” comparison;
Table 3). For a given pair of parameter values, we
counted the number of experiments where the
accuracy is better, worse, or identical, respectively.
The significance of the differences was estimated by
computing the P-value with a paired Wilcoxon signed-
rank test. This systematic comparison shows that the
most significant parameters are compound weight
(degree weight is better than unit weight), graph type
(RPAIR is better than reaction-specific RPAIR, and
both are better than reaction graph), and compound
filtering (filtered is better than nonfiltered).

It should be noted that, for each pair of parameter
values, this comparison includes all the possible
combinations of the five other parameters. However,
because of interdependencies between some para-
meters, a given choice might return better or worse
results, depending on the values chosen for the other
parameters. In order to estimate the best possible
performances for each parametric choice, we per-
formed a second comparison, where each parameter
value is coupled to its “best-friend” parameters (i.e.,
the combination of values for the five other para-
meters that returns the highest average accuracy for
the reference pathways) (“best-combination-wise”
comparison; Table 4). Interestingly, this analysis
indicates a significant impact for one parameter
only, the graph type: RPAIR outperforms both
reaction graph (P=2.4E-5 for all pathways merged)
and reaction-specific RPAIR graph (P=4.7E-5). At
first sight, it might seem surprising that, in this best-
combination-wise analysis (Table 4), the compound
weighting (degree or unit) had no significant effect
(P=0.15), whereas it appeared as the most significant
parameter in the systematic comparison discussed
above (Table 3). This is explained by the fact that the
disadvantage of the unit weight can be compensated
for by a specific combination of companion para-
meters, including the filtering of 36 highly connected
compounds and the class-specific weighting of
reactant pairs. It should also be noted that, for almost
all pairs of parameters, the common best-friend
parameter values include compound degree weight,
thereby confirming the importance of this parameter
for obtaining optimal accuracy.

In the following sections, we will try to under-
stand the reason why these parameters affect the
relevance of the inferred pathways.

Graph type

RPAIR graph versus reaction graph. ~ We noticed the
following reasons for accuracy differences between
the RPAIR graph and the reaction graph:

1. Using the RPAIR graph eliminates false posi-
tives introduced by alternative reactions linking
the same pair of compounds (e.g., R01398 and

R00665; Fig. 3b). They are represented as a
single reactant pair in the RPAIR graph (A00576;
Fig. 3¢).

2. A main compound and a side compound can be
connected by a reaction in the reaction graph,
without forming a reactant pair in the RPAIR
graph, because the side compound only
exchanges electrons, protons, or energy with
the considered main compound (e.g., reduced
adrenal ferredoxin and pregnenolone in reac-
tion R02724 of aldosterone biosynthesis in
humans; Fig. 2d).

3. A wrong path can be avoided in the RPAIR
graph, thanks to the mutual exclusion of RPAIRs
(e.g., reactant pair A04458 is associated with start
reaction R00259 and reaction R02282, which
prevents the traversal of reactant pairs belonging
to R02282 in the RPAIR graph, as shown in Fig. 3
for arginine biosynthesis in E. coli).

4. In the RPAIR graph, start and end nodes are
selected by identifying the main reactant pair
of the initial and terminal reactions (e.g., RPAIR
A02797 in the start reaction R03145 of pyruvate
oxidation in E. coli; Fig. 4), thereby restricting
the initial and final possibilities for searching
inappropriate paths.

5. The RPAIR and reaction graphs differ in
compound node degrees and, consequently, in
compound weights.

Point 1 can be considered as a side effect of the
scoring scheme. When calculating the accuracy of
pathfinding with a scoring scheme that does not
count as false positive the alternative reactions
linking the same pair of compounds, the accuracy
difference between the reaction graph and the
RPAIR graph is reduced, but remains significant
(Tables S5 and S6). Thus, the superior performance
of the RPAIR graph cannot be explained solely by a
side effect of the scoring scheme, but reflects the
benefits of RPAIR annotation discussed in points 2,
3, and 4, and illustrated by the study cases.
Concerning point 5, we found examples for path-
ways correctly recovered in the RPAIR graph, but
not in the reaction graph, because of compound
weight differences (i.e., arginine utilization in E.
coli). Other paths are recovered in the reaction
graph, but not in the RPAIR graph, for the same
reason (i.e., aromatic amino acid biosynthesis in S.
cerevisize). We may assume that differences in
compound weights favor neither the reaction
graph nor the RPAIR graph.

RPAIR graph wversus reaction-specific RPAIR
graph.  The mutual exclusion of reactant pairs is
less strict in the reaction-specific RPAIR graph than
in the RPAIR graph. To clarify this, consider the
following example: The cofac RPAIR A00002, con-
verting NAD" into NADH+H", occurs in 810 reac-
tions. In the RPAIR graph, as soon as any of these
reactions has been traversed through the main
reaction, the associated cofac RPAIR is marked as
forbidden in the next pathfinding steps. In contrast,
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in the reaction-specific RPAIR graph, the RPAIR
A00002 is represented as 810 independent nodes. Let
us assume that we traverse the main RPAIR of some
reaction involving A00002 as cofac RPAIR. In the
reaction-specific RPAIR graph, other instances of
A00002 can still occur among the next path steps as
part of another reaction. In the RPAIR graph, the
cofac reactant pair A00002 is excluded from the path.

Under the default scoring scheme, the RPAIR
graph performs significantly better than the reac-
tion-specific RPAIR graph. However, this superior
performance of the RPAIR graph comes at a cost:
When inferring a path, we do not know which of
several reactions sharing the same reactant pair has
been predicted. The reaction-specific RPAIR graph
gives a more precise answer, returning for each
reactant pair its associated reaction. However, this
apparent precision might be misleading because
pathfinding may arbitrarily choose one among the
possible reactions associated with a given RPAIR.

The difference in performance between RPAIR
graph and reaction-specific RPAIR graph is less
significant when applying the alternative scoring
scheme (in which alternative reactions between
compound pairs are not counted as false positives;
see Tables S5 and S6).

Directionality

We do not observe a significant difference
between directed and undirected graphs in any of
the Wilcoxon tests.

When considering the reaction-specific RPAIR
graph or the RPAIR graph, we realize that each
reactant pair has, by definition, only one substrate
and one product. This prevents traversion of a
reaction from substrate to substrate or from product
to product in these graphs. In contrast, for the
weighted reaction graph, the directed graph per-
forms better than the undirected one (Table 2).

Compound filtering and weighting

Consistent with our previous study,?"” the present

evaluation shows that a compound-weighted graph
yields higher accuracies compared to a compound-
filtered graph and that the latter increases accuracy
compared to the raw graph (Table 2). In the
experimentwise Wilcoxon test, the impact of both
filtering and weighting is highly significant (Table 3).
As discussed above, this significance does not appear
in the best-combination-wise Wilcoxon test (Table 4)
because the “best-friend” parameters of the unfil-
tered or unweighted graph compensate for the
absence of compound filtering or weighting. How-
ever, in this table, the compound degree weighting
scheme is always among the best friends of all other
parameter values.

Reaction filtering and weighting

The existence of annotated pathways containing
trans reactant pairs shows that, analogous to the

removal of highly connected compounds, the exclu-
sion of non-main reactant pairs might cause the loss
of valid pathways. Indeed, RPAIR graphs consisting
of main reactant pairs perform worse than those
including reactant pairs of classes main and trans or
of all classes. The performance decreases not only
because pathways with trans reactant pairs are
missed but also because the weight of highly
connected compounds is reduced by this strict
filtering policy, thereby decreasing the efficiency of
the compound degree weighting scheme.

To avoid the drastic effect of filtering, we tested a
weighting scheme that maintains all RPAIR classes
while favoring main reactant pairs over other reac-
tant pairs (RPAIR class-specific weighting scheme).
The difference in accuracy caused by this weighting
scheme is not significant for any of the tested
organisms in the best-combination-wise Wilcoxon
test. In the experimentwise Wilcoxon test, a sig-
nificant impact of reactant pair class-specific weights
is only observed for E. coli.

Overall, neither filtering nor weighting of reactant
pairs contributes significantly to pathfinding accu-
racy. It is possible that reactant pair class-specific
weights can still be optimized, but such an optimi-
zation would require intensive testing.

Conclusion

In previous studies,””” we evaluated the infer-
ence of metabolic pathways by pathfinding in three
alternative graph types (raw, compound-filtered,
and compound-weighted) and showed that path-
finding accuracy is strongly improved by weighting
compounds according to their degree in the meta-
bolic graph. We now extended this analysis by
comparing 104 combinations of parameters and by
quantifying the impact of each parameter on the
accuracy of the inferred pathways. In particular, we
assessed the benefit of a new level of annotation
available in KEGG in the form of reactant pairs
(RPAIRs). The main conclusion of our evaluation is
that RPAIR annotation, when combined with
compound weighting, significantly improves the
quality of pathfinding. Our findings are consistent
with a recent study that combines weighted meta-
bolic graphs with atom mappings determined
computationally.”” In contrast, the present analysis
relies on manual annotations by the KEGG/
LIGAND team. From both studies, we may con-
clude that the highest accuracies are achieved when
combining knowledge on atom flow in reactions (as
provided by RPAIR) and a weighting scheme
penalizing highly connected compounds.

Limitations of pathfinding

The k-shortest pathfinding relies on the assump-
tions that (1) the number of enzymes required to
synthesize or degrade a compound has been
minimized during evolution and that (2) each
compound and each reaction appear only once in
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Table 2. Impact of input parameters on the accuracy of pathway inference

Acc (%)

RPAIR class RPAIR Compound Geometric
Graph type filtering weights weights Directed Filtered Sn (%) PPV (%) accuracy
Organisms merged
RPAIR graph Main-trans Unit Degree True False 81.3 85.0 82.6
RPAIR graph Main-trans Unit Degree False False 81.3 85.0 82.6
Reaction-specific RPAIR graph All Unit Degree True False 79.6 753 76.7
Reaction-specific RPAIR graph All Unit Degree False False 79.6 75.3 76.7
Reaction-specific RPAIR graph All Unit Degree True True 79.2 75.6 76.7
Reaction-specific RPAIR graph All Unit Degree False True 79.2 75.6 76.7
Reaction graph All Unit Degree True False 74.6 72.2 72.5
Reaction graph All Unit Degree True True 74.6 72.2 72.5
Reaction graph All Unit Degree False False 712 69.9 69.5
Reaction graph All Unit Degree False True 712 69.9 69.5
Reaction graph All Unit Unit True True 61.4 55.6 56.9
Reaction graph All Unit Unit False True 59.9 51.8 54.0
Reaction graph All Unit Unit True False 435 8.6 15.7
Reaction graph All Unit Unit False False 45.1 8.0 153
E. coli
RPAIR graph Main-trans Unit Degree True False 92.3 93.7 93.0
RPAIR graph All RPAIR class-specific ~ Degree True False 923 93.7 93.0
RPAIR graph All RPAIR class-specific Degree False False 92.3 93.7 93.0
RPAIR graph Main-trans RPAIR class-specific Degree True False 92.3 93.7 93.0
RPAIR graph Main-trans Unit Degree False False 92.3 93.7 93.0
RPAIR graph Main-trans RPAIR class-specific Degree False False 92.3 93.7 93.0
Reaction-specific RPAIR graph ~Main-trans RPAIR class-specific =~ Degree False True 92.0 83.0 87.0
Reaction graph All Unit Degree True False 85.7 78.0 81.3
Reaction graph All Unit Degree True True 85.7 78.0 81.3
Reaction graph All Unit Degree False False 82.6 76.8 78.8
Reaction graph All Unit Degree False True 82.6 76.8 78.8
Reaction graph All Unit Unit True True 739 66.1 69.2
Reaction graph All Unit Unit False True 73.0 63.1 66.5
Reaction graph All Unit Unit True False 518 9.5 18.6
Reaction graph All Unit Unit False False 588 8.3 17.7
S. cerevisiae
RPAIR graph All Unit Degree False True 59.5 76.4 65.5
RPAIR graph All Unit Degree False False 59.5 76.4 65.5
RPAIR graph All Unit Degree True False 5915 76.4 65.5
RPAIR graph All Unit Degree True True 525 76.4 65.5
Reaction-specific RPAIR graph All RPAIR class-specific Degree True True 59.5 69.5 62.4
Reaction-specific RPAIR graph All RPAIR class-specific Degree True False 595 69.5 62.4
Reaction-specific RPAIR graph All RPAIR class-specific ~ Degree False False 59.5 69.5 62.4
Reaction-specific RPAIR graph All Unit Degree False True 59.5 69.5 62.4
Reaction-specific RPAIR graph All Unit Degree False False 5915 69.5 62.4
Reaction-specific RPAIR graph All RPAIR class-specific Degree False True 59.5 69.5 62.4
Reaction-specific RPAIR graph All Unit Degree True False 59.5 69.5 62.4
Reaction-specific RPAIR graph All Unit Degree True True 595 69.5 62.4
Reaction graph All Unit Degree True True 55.6 67.5 585
Reaction graph All Unit Degree True False 55.6 67.5 59.5
Reaction graph All Unit Degree False True 54.6 66.4 58.4
Reaction graph All Unit Degree False False 54.6 66.4 58.4
Reaction graph All Unit Unit True True  45.5 52.5 46.7
Reaction graph All Unit Unit False True 40.3 46.8 42.6
Reaction graph All Unit Unit False False 29.7 12.6 15.1
Reaction graph All Unit Unit True False  29.0 12.1 14.6
H. sapiens
RPAIR graph Main-trans Unit Degree True True 70.0 71.4 70.2
RPAIR graph All Unit Degree False True 70.0 71.4 70.2
RPAIR graph All RPAIR class-specific Degree False False 70.0 714 70.2
RPAIR graph Main-trans RPAIR class-specific Degree False True 70.0 71.4 70.2
RPAIR graph All RPAIR class-specific Degree True True 70.0 71.4 70.2
RPAIR graph All Unit Degree False False 70.0 714 70.2
RPAIR graph Main-trans Unit Degree False False 70.0 71.4 70.2
RPAIR graph Main-trans RPAIR class-specific Degree False False 70.0 714 70.2
RPAIR graph All Unit Degree True False 70.0 71.4 70.2
RPAIR graph Main-trans Unit Degree True False 70.0 71.4 70.2
RPAIR graph All RPAIR class-specific Degree True False 70.0 714 70.2
RPAIR graph Main-trans Unit Degree False True 70.0 71.4 70.2
RPAIR graph All RPAIR class-specific ~ Degree False True 70.0 71.4 70.2

RPAIR graph Main-trans RPAIR class-specific Degree True True 70.0 714 70.2
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Table 2 (continued)

Acc (%)
RPAIR class RPAIR Compound Geometric

Graph type filtering weights weights ~ Directed Filtered Sn (%) PPV (%) accuracy
H. sapiens

RPAIR graph All Unit Degree True True 70.0 714 70.2
RPAIR graph Main-trans RPAIR class-specific Degree True False 70.0 71.4 70.2
Reaction-specific RPAIR graph All RPAIR class-specific Degree False True 68.0 60.6 64.1
Reaction-specific RPAIR graph All RPAIR class-specific =~ Degree False False 68.0 60.6 64.1
Reaction-specific RPAIR graph All RPAIR class-specific Degree True False 68.0 60.6 64.1
Reaction-specific RPAIR graph All RPAIR class-specific Degree True True 68.0 60.6 64.1
Reaction-specific RPAIR graph All Unit Degree True False 68.0 60.6 64.1
Reaction-specific RPAIR graph All Unit Degree False True 68.0 60.6 64.1
Reaction-specific RPAIR graph All Unit Degree True True 68.0 60.6 64.1
Reaction-specific RPAIR graph All Unit Degree False False 68.0 60.6 64.1
Reaction graph All Unit Degree True True 60.2 58.8 58.7
Reaction graph All Unit Degree True False 60.2 58.8 58.7
Reaction graph All Unit Degree False False 52.9 51.9 51.9
Reaction graph All Unit Degree False True 52.9 51.9 51.9
Reaction graph All Unit Unit True True 424 30.4 33.4
Reaction graph All Unit Unit False True 42.9 26.2 30.9
Reaction graph All Unit Unit False False 38.0 3.0 9.2
Reaction graph All Unit Unit True False 34.6 3.0 8.7

For each organism, experiments are sorted by decreasing Acc value. Due to space restrictions, we only display a subset of the conditions
selected to highlight the impact of the most influential parameters. The complete tables of 104 experiments are available as
Supplementary Material. We highlighted in bold the three conditions tested in Croes et al.*'

a valid metabolic pathway. These assumptions are,
however, not always justified. For example, the
citric acid cycle has not been optimized to consist of
the smallest possible number of enzymes but to
produce energy and precursors for some metabolic
pathways (e.g., amino acid biosynthesis). The
second assumption does not hold for cyclic path-
ways or for pathways in which the same enzymes
act repeatedly on a growing chain (e.g., fatty acid
elongation). Consequently, these pathways can only
be partly inferred.

Our pathfinding approach is also limited by the
incomplete coverage of KEGG reactions by RPAIR
(842 of 6580 reactions involved in small-molecule
metabolism are not covered). In addition, RPAIRs
are so far only annotated in KEGG and not cross-
referenced to other major metabolic databases such
as BioCyc’ or Reactome,*' so that our pathfinding
approach can only be applied to KEGG/LIGAND
metabolic data.

In general, metabolic pathfinding accuracy
depends on the size and quality of the underlying
metabolic network. If a reaction or compound is
absent from the input network, a path containing
this reaction or compound cannot be predicted. On
the other side, a wrong connection between two
compounds or reactions might lead to the prediction
of an erroneous path. The KEGG networks eval-
uated in our study were not filtered (except to
remove disconnected compounds, as well as non-
small-molecule reactions and their reactants).
Further filtering steps may therefore increase the
accuracy of predicted paths.

The evaluation presented here is restricted to three
organisms. It is worth wondering whether the
approach is applicable to other organisms as well.
In principle, our pathfinding approach is not organ-

ism-specific, but the metabolic network available
might be biased for the model organisms that served
to annotate the reference maps. In newly sequenced
genomes, the pathways may differ from those
reference pathways. However, if an organism
employs alternative pathways by assembling in a
different way the reactions and compounds covered
by the current KEGG data, our method should be
able to discover them. Of course, the ca 6000
reactions available in LIGAND are likely to miss
some reactions that might be important for some
organism-specific pathways or contain some anno-
tation errors. In such case, our method will fail to
assemble correctly the reactions and return incorrect
pathways.

Another limitation of our metabolic pathfinding
tool, but not of our approach in general, is its
incapability to predict the direction of a pathway:.
The direction of a reaction is organism-specific
(being dependent on the temperature and reactant
concentrations in an organism). Because of this, we
decided to treat all reactions as reversible in this
evaluation study. However, the pathfinding algo-
rithm can easily handle irreversible reactions, and
the metabolic pathfinding tool allows the user to
upload custom networks that may contain irrever-
sible reactions.

Our compound weighting scheme exploits the fact
that many compounds participating in metabolic
pathways are only involved in a few reactions. Thus,
it cannot deal well with pathways situated in the core
of the metabolic network that consist of several highly
connected compounds (i.e., glycolysis). Finding paths
in the RPAIR graph alleviates this weakness, but some
central pathways still escape detection.

Note that even though inferred pathways do not
reproduce annotated pathways with 100% accuracy,



Table 3. Systematic pairwise comparison between experiments

Number Number

of times of times Number of

superior inferior times both Mean Mean Difference Paired

Number value value has  values have accuracy accuracy between Wilcoxon
Superior Inferior of unequal has higher higher equal of superior  of inferior mean signed-rank Level of
Parameter value value comparisons accuracy accuracy accuracy value value accuracies  test P-value  significance
Organisms merged
Compound weight Degree Unit 52 52 0 0 0.77 0.63 0.14 1.80E-10 *k
Graph type RPAIR graph Reaction-specific 48 48 0 0 0.74 0.68 0.06 8.36E-10 ok
RPAIR graph
Compounds filtered True False 50 31 19 2 0.73 0.66 0.07 2.30E-05 ok
RPAIR class filtering Main-trans Main 32 25 7 0 0.72 0.69 0.03 8.85E-05 ok
RPAIR class filtering All Main & 25 7 0 0.72 0.69 0.03 0.000279793 *x
Graph type RPAIR graph Reaction graph 8 8 0 0 0.74 0.53 0.21 0.004 *
Graph type Reaction-specific Reaction graph 8 8 0 0 0.67 0.53 0.14 0.004 *
RPAIR graph
RPAIR weight RPAIR class-specific Unit 40 20 20 8 0.72 0.7 0.02 0.021
Directed False True 17 12 ) B85 0.7 0.7 0 0.138
RPAIR class filtering All Main-trans 28 16 12 4 0.72 0.72 0 0.203
Results for E. coli
Compound weight Degree Unit 52 52 0 0 0.88 0.72 0.16 1.79E-10 ok
Graph type RPAIR graph Reaction-specific 48 48 0 0 0.85 0.79 0.06 8.33E-10 ok
RPAIR graph

Compounds filtered True False 50 38 12 2 0.84 0.77 0.07 6.24E-07 ok
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RPAIR weight
Graph type

Graph type

RPAIR class filtering
RPAIR class filtering
RPAIR class filtering
Directed

Results for S. cerevisiae
Compound weight
Compounds filtered

Graph type

Graph type
Graph type

RPAIR class filtering
RPAIR class filtering
RPAIR weight
Directed

RPAIR class filtering

RPAIR class-specific
RPAIR graph

Reaction-specific
RPAIR graph

Main
Main-trans
Main

False

Degree
True

RPAIR graph

RPAIR graph

Reaction-specific
RPAIR graph

Main-trans
All
RPAIR class-specific
False

Main

Unit
Reaction graph

Reaction graph

All
All
Main-trans

True

Unit
False

Reaction-specific
RPAIR graph

Reaction graph

Reaction graph

Main
Main-trans
Unit
True

All

&8

32

23

32

52

28

48

28

28

26

30

24

23

13

16

48

27

40

16

18

17

16

10

16

12

10

14

15

1

24

22

46

0.83

0.83

0.76

0.83

0.82

0.83

0.8

0.6

0.58

0.55

0.57

0.54

0.55

0.55

0.54

0.53

0.53

0.81

0.62

0.62

0.81

0.81

0.82

0.8

0.47

0.49

0.53

0.44

0.44

0.53

0.55

0.54

0.53

0.55

0.02

0.21

0.14

0.02

0.01

0.01

0.13

0.09

0.02

0.13

0.1

0.02

0.02

0.000827796 ok

0.004 *

0.004 *

0.025

0.046

0.168

0.518

3.19E-10 ok

2.18E-06 ok

8.05E-05 ok

0.007

0.007

0.022

0.023

0.419

0.663

0.967

(continued on next page)
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Table 3 (continued)

Number Number

of times of times Number of

superior inferior times both Mean Mean Difference Paired

Number value value has  values have accuracy accuracy between Wilcoxon
Superior Inferior of unequal has higher higher equal of superior  of inferior mean signed-rank Level of
Parameter value value comparisons accuracy accuracy accuracy value value accuracies  test P-value  significance
Results for H. sapiens
Graph type RPAIR graph Reaction-specific 48 45 & 0 0.62 0.54 0.08 1.41E-09 *k
RPAIR graph
Compound weight Degree Unit 52 50 2 0 0.61 0.52 0.09 1.63E-09 #k
RPAIR class filtering Main-trans Main 32 30 2 0 0.6 0.52 0.08 1.66E—06 ok
Compounds filtered True False 30 28 2 22 0.58 0.54 0.04 1.75E-06 ok
RPAIR class filtering All Main 32 30 2 0 0.61 0.52 0.09 2.39E-06 ok
Graph type RPAIR graph Reaction graph 8 8 0 0 0.63 0.38 0.25 0.007
Graph type Reaction-specific Reaction graph 8 8 0 0 0.54 0.38 0.16 0.007
RPAIR graph

RPAIR weight RPAIR class-specific Unit 20 12 8 28 0.58 0.57 0.01 0.017
Directed FALSE True 10 7 3 42 0.56 0.56 0 0.154
RPAIR class filtering All Main-trans 12 8 4 20 0.61 0.6 0.01 0.155

A Wilcoxon paired signed-rank test was applied to all pairs of parameter values, with all other parameters having the same value. This test computes Acc differences for combinations that differ by only
one parameter value. P-value indicates the first error risk (i.e., the probability to consider a difference as significant when it is not). The table is sorted by ascending P-values, so the most significant

parameter value differences appear on top.
* P-value below 0.005.
** P-value below 0.001.
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they may be biochemically valid alternatives (e.g.,
aldosterone biosynthesis in humans). Our evalua-
tion may thus underestimate the accuracy of our
pathfinding approach.

Pathfinding and constraints

In the Introduction, we have discussed pathfind-
ing approaches under the aspect of treatment of
highly connected compounds. Another way to
classify these approaches might rely on the con-
straints used to narrow down the huge number of
possible solution pathways. We can list the following
biologically or biochemically motivated constraints:

1. Pathway length/weight: The solution path-
way should be as short (light) as possible (i.e.,
Croes et al.,?! Arita,?® Rahman et al.,3! Sirava et
al.,** and Beasley and Planes™®).

2. Imposing or excluding nodes: Certain com-
pounds or reactions should appear or should not
appear in the solution pathway (e.g. Rahman
et al.! Sirava et al.,*? and Mavrovouniotis**).

3. Mutual exclusion of reaction directions: The
direct and reverse directions of a reaction should
not appear together in a solution pathway.*"**

4. Maximal pathway length: The length (number
of reactions) of the solution pathway should
neither exceed a maximum nor fall below a
minimum.®?'

5. Stoichiometric constraint: Stoichiometric bal-
ance should be respected between some or all
of the compounds of the solution pathway (e.g.
Beasley and Planes,*> Mavrovouniotis,** and
Seressiotis and Bailey™).

The first constraint is the most widely applied: All
approaches based on the shortest pathfinding make
use of it implicitly. Beasley and Planes employ
pathway length as an objective function to be
optimized (alternatively to ATP production max-
imization). Constraints 2—4 are already integrated in
our pathfinding approach, except for imposing
selected nodes, which we hope to deal with in the
future by using multiseed pathfinding.

To our knowledge, Beasley and Planes presented
the most recent approach capable of computing
pathway stoichiometry. They used a strategy remi-
niscent of flux balance analysis that is based on the
optimization of an objective function while satisfy-
ing a number of constraints. They evaluated this
approach on a network reconstructed for E. coli
consisting of 880 reactions and recovered, among
others, the glycolysis pathway correctly. However,
in a recent review, Planes and Beasley pointed
out some disadvantages of the stoichiometric
constraint.*® First of all, it is unclear which com-
pounds should be stoichiometrically balanced
(internal compounds) and which can be left uncon-
strained (external compounds). Furthermore, they
listed metabolic pathways in which compounds
annotated to be internal are not balanced. In

conclusion, they state that pathfinding without
stoichiometric constraints is more suited for path-
way analysis in genome-scale metabolic networks.

Perspectives

In the future, we hope to extend our method to
more than two sets of input reactions or compounds.
This will enable the inference of branched pathways
and might allow for an increase in prediction
accuracy when more input reactions or compounds
are available. A complementary refinement of our
method might be to select metabolic networks
representing the metabolism of only one or several
related organisms.

The compound weighting applied in this evalua-
tion is based on a relatively simple rule (a compound
weight is set equal to its degree in the metabolic
network). In the future, alternative weighting
schemes will be considered in order to achieve
context-specific pathfinding. For instance, organism-
specific pathfinding might be refined by applying
weights to reactions according to their likelihood to
be catalyzed in the organism of interest, rather than
by selecting the subnetwork on the basis of genome
annotations. Indeed, some enzyme-coding genes
may have been missed in the annotation but play an
essential role in some pathways. Another possibility
is to weight reactions according to the level of
expression of the corresponding enzymes, as mea-
sured by microarray experiments. A similar
approach has been applied earlier by scoring paths
according to the average correlation between the
expression profiles of the corresponding genes.*””
Instead of scoring the paths a posteriori, weighted
pathfinding would allow application of an a priori
bias on pathfinding in order to favor reactions
catalyzed by the products of up-regulated genes.
Pathfinding could thus be tuned according to the
physiological state of the cell under particular
culture conditions.

Another perspective is to generalize the concept of
pathfinding by applying constraint programming
methods to the problem of metabolic pathway
inference. In this context, Dooms et al. designed a
general framework for constrained pathfinding in
biochemical networks, named CP(BioNet).** At the
time of writing, CP(BioNet) was restricted to net-
works consisting of, at most, 500 nodes, and we
could thus not evaluate it on our metabolic net-
works, but its performance might be improved in
the near future. The combination of this framework
with the optimal conditions that we identified in the
present study might result in a powerful and flexible
metabolic pathfinding tool.

It would be of great interest to carry out a
comparative evaluation of the different metabolic
pathfinding approaches available. Although some
comparative studies have been published,”*° a
thorough evaluation either based on a community-
based CASP-like blind protocol or performed by
independent users is still missing.



Table 4. Pairwise comparison between parameter values, with each parameter being associated with its “best friends” (conditionally optimal combinations)

Number Number Number
of times  of times  of times ~ Mean Mean
superior  inferior both accuracy accuracy Difference  Paired
Number  value has value has  values of of between  Wilcoxon
Superior Inferior of unequal  higher  higher have equal superior inferior ~ mean signed-rank Unique best friends  Unique best friends Level of
Parameter value value comparisons accuracy accuracy accuracies — value value accuracies test P-value of superior value of inferior value Common best friends  significance
Organisms merged
Graph type RPAIRs Reaction 25 23 2 24 0.83 0.73 0.1 24E-05 RPAIRs; main-trans; Rct graph; all; directed Rct unit weight; *k
graph Cpd unfiltered Cpd degree weight
Graph type RPAIRs Reaction- 24 23 1 25 0.83 0.77 0.06 47E-05 RPAIRs; main—trans  Rct-specific RPAIRs; Ret unit weight; L
specific all Cpd degree weight;
RPAIRs Cpd unfiltered
Graph type  Reaction- Reaction 9 7 2 40 0.77 0.73 0.04 0.012 Ret-specific RPAIRs; Rt graph; directed AlL; Ret unit weight;
specific graph Cpd unfiltered Cpd degree weight
RPAIRs
RPAIR class All Main 10 9 1 39 0.83 0.79 0.04 0.033 All; Cpd unfiltered Main; undirected; RPAIRs; Ret unit
filtering Cpd filtered weight; Cpd degree
weight
RPAIR class Main-trans Main 8 7 1 41 0.83 0.79 0.04 0.070 Main-trans; Cpd Main; undirected; RPAIRs; Ret unit
filtering unfiltered Cpd filtered weight; Cpd degree
weight
Compound Degree Unit 18 11 7 31 0.83 0.79 0.04 0.148 Main-trans; Ret unit All; RPAIR RPAIRs
weight weight; Cpd degree  class-specific weight;
weight; Cpd Cpd unit weight;
unfiltered Cpd filtered
RPAIR RPAIR Unit weight 3 2 1 46 0.82 0.83 0.01 0.605 All; RPAIR Main-trans; Ret unit RPAIRs; Cpd degree
weight  class-specific class-specific weight weight; Cpd unfiltered
weight
RPAIR class All Main-trans 4 2 2 45 0.83 0.83 0 0.821 All Main-trans RPAIRs; Ret unit weight;
filtering Cpd degree weight;
Cpd unfiltered
Directed True False 0 0 0 49 0.83 0.83 0 1 Directed Undirected RPAIRs; main-trans;
Rct unit weight;
Cpd degree weight;
Cpd unfiltered
Compounds True False 0 0 0 49 0.83 0.83 0 1 Cpd filtered Cpd unfiltered RPAIRSs; main-trans;
filtered Rct unit weight;
Cpd degree weight
Results for E. coli
Graph type RPAIRs Reaction- 14 14 0 14 0.95 0.88 0.07 5.3E-04 RPAIRs; Cpd Ret-specific RPAIRs; Cpd degree weight *k
specific unfiltered main-trans; RPAIR
RPAIRs class-specific weight;
Undirected; Cpd filtered
Graph type RPAIRs Reaction 14 14 0 14 0.95 0.84 0.11 5.3E-04 RPAIRs; Cpd Rct graph; all; Ret unit Cpd degree weight o
graph unfiltered weight; directed
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RPAIR class
filtering

RPAIR class
filtering

Graph type

Compound
weight

RPAIR class
filtering

RPAIR
weight

Directed

Compounds
filtered

Results for S.

Graph type

Graph type

RPAIR
weight

RPAIR class
filtering

Compound
weight

RPAIR class
filtering

RPAIR class
filtering

Graph type

Main-trans Main
All Main
Reaction- Reaction
specific graph
RPAIRs
Degree Unit
All Main-trans

RPAIR Unit weight
class-specific

True False
True False
cerevisiae
RPAIRs Reaction
graph

RPAIRs  Reaction-specific
RPAIRs

Unit weight RPAIR
class-specific

All Main
Degree Unit
All Main-trans
Main-trans Main
Reaction-  Reaction graph
specific
RPAIRs

25

25

25

22

28

28

28

28

28

0.95

0.95

0.88

0.95

0.95

0.95

0.95

0.95

0.66

0.66

0.66

0.66

0.66

0.66

0.64

0.62

0.92

0.92

0.84

0.95

0.95

0.95

0.95

0.95

0.59

0.62

0.62

0.6

0.57

0.64

0.6

0.59

0.03

0.03

0.04

0.07

0.04

0.04

0.06

0.09

0.02

0.04

0.03

0.087

0.087

0.091

0.417

0.091

0.091

0.091

0.147

0.147

0.186

0.290

0.500

Main-trans
All; RPAIR class-
specific weight
Ret-specific RPAIRs;
main-trans; RPAIR
class-specific weight

Cpd degree weight;
Cpd unfiltered

All; RPAIR class-
specific weight

RPAIR class-specific
weight

Directed

Cpd filtered

Cpd filtered

RPAIRs
RPAIRs; Rct unit
weight
RPAIRs; Ret unit
weight
All; Ret unit weight
All; Ret unit weight;
Cpd degree weight
All

Main-trans; Rect unit
weight

Ret-specific RPAIRs

Main; Ret unit weight

Main; Ret unit weight

Ret graph; all; Ret unit
weight; directed

All; RPAIR
class-specific weight;
Cpd unit weight;
Cpd filtered
Main-trans
Main-trans; Ret unit

weight

Undirected

Cpd filtered

Cpd unfiltered

Ret graph; directed

Ret-specific RPAIRs

Ret-specific RPAIRs;
RPAIR class-specific
weight
Main
Cpd unit weight;
Cpd filtered

Main-trans

Main

Ret graph; Ret unit
weight; directed

RPAIRs; Cpd degree
weight; Cpd unfiltered

RPAIRs; Cpd degree
weight; Cpd unfiltered

Cpd degree weight

RPAIRs

RPAIRs; Cpd degree
weight; Cpd unfiltered

RPAIRs; Cpd degree
weight; Cpd unfiltered

RPAIRs; Cpd degree
weight; Cpd unfiltered

RPAIRs; Cpd degree
weight
RPAIRs; Cpd degree
weight

AlL; Ret unit weight;
Cpd degree weight

All; Cpd degree
weight

All; Cpd degree
weight
RPAIRs; Cpd degree
weight

RPAIRs

RPAIRs; Ret unit
weight; Cpd degree
weight

RPAIRs; Cpd degree
weight

All; Cpd degree
weight

(continued on next page)
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Table 4 (continued)

Number Number Number
of times  of times  of times ~ Mean Mean
superior  inferior both accuracy accuracy Difference  Paired
Number  value has value has  values of of between  Wilcoxon
Superior Inferior of unequal ~ higher  higher have equal superior inferior ~ mean  signed-rank Unique best friends ~ Unique best friends Level of
Parameter value value comparisons accuracy accuracy accuracies value value accuracies test P-value of superior value of inferior value Common best friends  significance
Directed True False 0 0 0 11 0.66 0.66 0 1 Directed Undirected RPAIRs; all; Ret unit
weight; Cpd degree
weight
Compounds True False 0 0 0 11 0.66 0.66 0 1 Cpd filtered Cpd unfiltered RPAIRs; all; Ret unit
filtered weight; Cpd degree
weight
Results for H. sapiens
Graph type RPAIRs Reaction 8 7 1 2 0.7 0.59 0.11 0.021 RPAIRs Rct graph; all; Ret Cpd degree weight
graph unit weight; directed
Graph type RPAIRs Reaction- 8 7 1 2 0.7 0.64 0.06 0.040 RPAIRs Ret-specific RPAIRS; Cpd degree weight
specific all
RPAIRs
RPAIR class Main-trans Main 8 7 1 2 0.7 0.6 0.1 0.040 RPAIRs; main-trans  Rct-specific RPAIRs; Cpd degree weight
filtering main; Ret unit weight
RPAIR class
filtering All Main 8 7 1 2 0.7 0.6 0.1 0.040 RPAIRs; all Ret-specific RPAIRS; Cpd degree weight
main; Ret unit weight
Graph type  Reaction- Reaction 4 8 1 6 0.64 0.59 0.05 0.101 Ret-specific RPAIRs Ret graph; Ret unit All; Cpd degree
specific graph weight; directed weight
RPAIRs
Compound Degree Unit 6 8 8 4 07 0.67 0.03 0.500 Cpd degree weight ~ RPAIR class-specific RPAIRs
weight weight; Cpd unit
RPAIR class All Main-trans 0 0 0 10 0.7 0.7 0 1 All Weight; Cpd RPAIRs; Cpd degree
filtering weight
RPAIR RPAIR Unit weight 0 0 0 10 0.7 0.7 0 1 RPAIR class-specific Rct unit weight RPAIRs; Cpd degree
weight  class-specific weight weight
Directed True False 0 0 0 10 0.7 0.7 0 1 Directed Undirected RPAIRs; Cpd degree
weight
Compounds True False 0 0 0 10 0.7 0.7 0 1 Cpd filtered Cpd unfiltered RPAIRs; Cpd degree
filtered weight

For each parameter, we selected the combination of other parameters giving the best accuracy. Wilcoxon test was then performed by counting the number of pathways for each alternative value, giving a better, worse, or equal

accuracy, respectively.

Cpd: compound; Ret: reaction.

* P-value below 0.005.
** P-value below 0.001.
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Materials and Methods

Network construction

We constructed three different networks from KEGG/
LIGAND (release 41.0).

The first graph, named reaction graph, was built from
all reactions and compounds present in KEGG/
LIGAND. The resulting graph is composed of 6359
reactions and 5312 compounds, which are connected by
26,786 edges.

The second graph, termed RPAIR graph, was con-
structed from all reactant pairs (7058) in KEGG RPAIR
(release 41.0) and all compounds involved in at least one
of these reactant pairs (4297). It has fewer compounds than
the reaction graph because RPAIR does not cover all the
reactions and compounds listed in LIGAND.

Finally, we constructed a reaction-specific RPAIR graph,
where each reaction is divided into its reactant pairs. In
this graph, the same RPAIR can correspond to distinct
nodes if it is part of multiple reactions. This graph contains
12,828 reaction-specific reactant pairs and as many
compounds as the RPAIR graph (4297).

All three networks (or graphs, to use the mathematical
term) are bipartite and not organism-specific. We excluded
glycans and orphan nodes (nodes not connected to any
other node), as well as reactions having a substrate and a
product with an identical identifier in KEGG (these
correspond to polymerization reactions). The reaction/
RPAIR and compound node numbers given above refer to
these filtered networks. The KEGG/LIGAND database
contams a number of problematlc entries (see Poolman
et al.*® Félix and Valiente,” and Ott and Vriend”’; e.g.,
generic compounds, duplicated reactions, and unbalanced
reactions). However, further filtering steps are beyond the
scope of this evaluation.

Mutual exclusion between reaction nodes

As discussed in Croes ef al.,*” the direction of a reaction

(or a reaction pair) depends on physiological conditions in
an organism (substrate concentration, product concentra-
tions, and temperature). In our previous work, we thus
considered that each reaction can be traversed either in
forward direction or in reverse direction. Each reaction
was therefore represented as a pair of nodes for the
forward direction and the reverse direction, respectively.
To prevent the pathfinding algorithm from traversing the
same reaction/reactant pair twice, the forward and
reverse directions exclude each other mutually. In the
RPAIR and reaction-specific RPAIR graphs, we ensure, in
addition, that reactant pairs belonging to the same
reaction exclude each other.

Parameters

Table 1 summarizes the different parameters used for
graph construction. In total, the values of the parameters
listed (graph construction, graph structure, compound
and reaction weights, and compound and reaction
filtering) can be combined in 104 possible ways.

Reference pathways

In order to measure the accuracy of pathfinding in
metabolic graphs, a set of reference pathways is needed.

We chose the metabolic pathways stored in the aMAZE
database®® (version 2006) because they have been care-
fully annotated and provide side/main compound
classification and cross-reference reactions and com-
pounds to KEGG/LIGAND. Since pathfinding cannot
deal with branched pathways, we_ selected the linear
segments as in our previous work® and removed side
compounds. Pathways composed of less than three
reactions were discarded, since finding them would be
trivial. For the two RPAIR graphs, reactions of the
reference pathways had to be mapped to their corre-
sponding reactant pairs. Each reaction was replaced by
its main reactant pair. When a reaction was associated
with several main reactant pairs, we selected only those
whose substrate and product were part of the linearized
pathway. For three of the E. coli pathways (alanine
biosynthesis and the two branches of methionine
biosynthesis), mapping to main reactant pairs was not
sufficient to obtain the fully connected pathway, and we
had to use trans reactant pairs.

The aMAZE database contained 116 pathways: 55
from E. coli, 29 from S. cerevisiae, and 32 from H. sapiens.
Of these, 7 were cyclic (E. coli, 2; S. cerevisiae, 4; H.
sapiens, 1), 25 were branched (E. coli, 13; S. cerevisiae, 5;
H. sapiens, 7), and 46 contained less than three reactions
(E. coli, 20; S. cerevisiae, 14; H. sapiens, 12). After filtering
and linearization, 69 pathways remained (E. coli, 37; S.
cerevisiae, 14; H. sapiens, 18). After mapping of reactions
to main/trans RPAIRs, we ended up with the 55
pathways used for evaluation (E. coli, 32; S. cerevisiae,
11; H. sapiens, 12).

Metabolic pathfinding algorithm

We find paths in weighted graphs using the k-shortest
paths algorithm developed and implemented by Jimenez
and Marzal.”® By mtroducmg pseudo nodes (a graph
transformation described in Duin et al.>*), we enable the
search between a set of start nodes and a set of end nodes.
Starts and ends can be compounds, reactions, or both. For
given sets of start and end nodes, we regard as an inferred
pathway the union of all paths of first rank (having equal
weights) between them. Thus, inferred pathways can
contain alternative branches.

Evaluation procedure

The evaluation procedure consists in finding the k-
shortest (or lightest) paths between the start and the end
reactions of a reference pathway and comparing the
intermediate nodes of the inferred path with those of the
annotated pathway. The motivation for searching paths
from reaction to reaction (rather than from compound to
compound) is that this is more relevant to metabolic
reconstruction, where one starts from sets of enzyme-
coding genes.

To compute the accuracy of an inferred pathway, we
consider the intersection of node sets of the inferred and
reference pathways. Nodes appearing in both pathways
count as true positives, whereas nodes absent in the
inferred pathway but present in the reference pathway
are false negatives. Nodes found in the inferred path-
way but not in the reference pathway are false
positives. Since start and end nodes are known before-
hand, they are not considered for those matching
statistics.

Note that, in our previous publication,21 alternative
reactions linking a pair of compounds were not counted as
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false positives. In the present study, we applied more
stringent criteria in order to precisely quantify the
impact of the RPAIR annotations. For the sake of
comparison, we also applied all the tests with the
previous scoring scheme, and the results are available as
Tables S5 and Sé6.

Sn is the fraction of annotated nodes that are found in
the inferred pathway:

Sn = TP/(TP + FP)

PPV is defined as the fraction of inferred nodes that belong
to the annotated pathway:

PPV = TP/(TP + FP)

Given both Sn and PPV, we calculate the accuracy of an
inferred pathway as their geometric mean:

Acc = sqrt(SN x PPV)

The evaluation of a specific parameter combination
proceeds as follows: First, we identify the start and end
reactions (or main reactant pairs) of one reference path-
way. Metabolic pathfinding is run on these input reactions
in one of the three metabolic graphs and returns a
pathway. By comparing the predicted pathway with the
reference pathway, the accuracy of pathway prediction is
calculated. These steps are performed for each pathway in
the reference set and for each possible combination of the
parameters described above. Since we deal with 104
parameter combinations, 104 such evaluations have been
performed.

Wilcoxon paired signed-rank test

Since we perform a number of experiments with
different parameter values, we need a statistical test to
measure the significance of accuracy differences that result
from having used two different values for the same
parameter. We have chosen the Wilcoxon paired signed-
rank test for this task because it makes no assumptions on
sample distribution.

Let us consider one group of pathfinding experiments
performed with one value and another group of experi-
ments performed with another value for the same
parameter. The null hypothesis states that there is no
accuracy difference between the two experiment groups.
The alternative hypothesis says that one of the two
experiment groups yields pathfinding accuracies that
belong to another (right-shifted) distribution compared
to those obtained for the other experiment group, and that,
consequently, one parameter value improves pathfinding
accuracy as compared to the other to a certain level of
significance.

For the experimentwise Wilcoxon test, we paired all
experiments that differed only by the parameter in
question. We thus obtained two vectors, where each
entry represents the pathfinding accuracy averaged over
all paths of an experiment. The significance of pathfinding
accuracy difference is then computed on these paired
vectors.

In contrast, for the best-combination-wise Wilcoxon test,
we paired only those experiments that yielded the highest
accuracies for the two values of a parameter in question.
We then calculated the significance of the accuracy
difference by comparing the pathfinding accuracies of
these experiments pathwaywise.

For both Wilcoxon tests, we used the function wilcox.
test in R to compute P-values.

Implementation and availability

The metabolic pathfinding toolt is available as part of
Network Analysis Tools.” Tt allows the enumeration of
the shortest paths in the three graph types and lets the
user choose between different combinations of com-
pound and reaction weights. The optimal parameter
values obtained by our evaluation are set as default.
KEGG identifiers of compounds, reactions and reactant
pairs, EC numbers, and compound names can be given
to specify start and end nodes. In addition, multiple start
and end nodes can be provided. It is also possible to
find paths in organism-specific metabolic networks
extracted from KEGG.

The complete results of our evaluation (104 experiments
for E. coli, S. cerevisiae, and H. sapiens) can be found at the
RSAT Web sitei.
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3 Multiple-end metabolic pathway
prediction

Presented article:

K. Faust, P. Dupont, J. Callut and J. van Helden

Pathway discovery in metabolic networks by subgraph extraction
Submitted.

3.1 Introduction

After having established a strategy to increase the accuracy of two-end path finding, the next
step of the thesis was to develop, evaluate and apply multiple-end pathway prediction ap-
proaches. In contrast to path finding, multiple-seed pathway prediction can predict pathways
starting from or ending in several compounds or reactions. In addition, the ability to treat more
than two seeds allows to predict metabolic pathways from groups of enzyme-coding genes, en-
zymes, reactions or compounds. This in turn can serve the interpretation of high-throughput
data sets featuring these seed groups.

This chapter presents the development and evaluation of multiple-end pathway prediction
approaches, whereas the next chapter ( 4 ) presents their application to a microarray data set.

Seven algorithms were evaluated, one of them based on random walks (kWalks [48]), and
three others on shortest paths. The other three algorithms are combinations of the shortest-
paths based algorithms with kWalks. The algorithms are presented in section 9.1. All al-
gorithms rely on the extraction of a subgraph from the input network, which represents the
predicted pathway.

3.2 Contribution

P. Dupont and J. Callut developed and implemented the kWalks algorithm. K. Faust imple-
mented the other algorithms (except for Klein-Ravi), carried out the evaluation and wrote the
article. P. Dupont and J. van Helden revised the article.

3.3 Methods

The evaluation of the algorithms was carried out on a network constructed from MetaCyc,
with 71 reference pathways taken from S. cerevisiae (see section 9.2 for the pathway list). In
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contrast to the evaluation of path finding presented in chapter 2, a linearization of the reference
pathways was unnecessary, since the evaluation of multiple-end pathway prediction should
also quantify the prediction accuracy for branched pathways.

Each of the seven algorithms was launched several times on each of the 71 pathways, to
predict pathways for increasing number of seed reactions.

In addition, the performance of the algorithms was evaluated for various parameters, e.g.
network directionality, different weight policies, kWalks iteration number and others. KWalks
outputs node and edge relevances, which can serve as new node or edge weights. These
weights can be refined by calling kWalks iteratively on the input network, whose weights
are up-dated in each round with the node/edge relevances computed by kWalks. The kWalks
iteration number refers to the number of times kWalks is repeated.

3.4 Results

The algorithm reaching highest accuracy (~77%) was a hybrid of kWalks and Takahashi-
Matsuyama [154]. The hybrid algorithm takes advantage of the complementary strengths of
kWalks (high sensitivity, low computational complexity) and shortest-paths based approaches
(high PPV).

The evaluation also yielded the following insights:

KWalks can be used to discover weights in case a good weight policy is not at hand.

Combining a shortest-paths based algorithm with kWalks increases its speed.

Iterations of more than three do not increase the accuracy of kWalks any further.

Reduction of the intermediate network size (i.e. its node number) in the hybrid approach
down to a certain percentage (0.5% in this evaluation) increases the prediction accuracy.

3.5 Conclusion

A combination of a random walk-based (kWalks) with a shortest-paths based (Takahashi-
Matsuyama) approach yields a pathway prediction accuracy of ~77% in the weighted Meta-
Cyc network, which was the highest achieved for any algorithm or parameter combination.
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ABSTRACT

Motivation: Subgraph extraction is a powerful technique to predict
pathways from biological networks and a set of query items (e.g.
genes, proteins, compounds...). It can be applied to a variety of diffe-
rent data types, such as gene expression, protein levels, operons or
phylogenetic profiles. In this article, we investigate different approa-
ches to extract relevant pathways from metabolic networks. Although
these approaches have been adapted to metabolic networks, they are
generic enough to be adjusted to other biological networks as well.
Results: We comparatively evaluated seven sub-network extraction
approaches on 71 known metabolic pathways from S. cerevisiae and
a metabolic network obtained from MetaCyc. The best performing
approach is a novel hybrid strategy, which combines a random walk-
based reduction of the graph with a shortest-paths based algorithm,
and which recovers the reference pathways with an accuracy of ~
77%.

Availability: Most of the presented algorithms are available as part of
the network analysis tool set (NeAT). The kWalks method is released
under the GPL3 license.

Contact: kfaustulb.ac.be

1 INTRODUCTION

Pathway inference aims to extract a meaningful pathway given a
biological network (e.g. protein-protein interaction or metabolic
network) and a set of query items (e.g. genes, proteins, compounds).
This methodology may serve to predict pathways from a variety of
data types, such as gene expression, operons, phylogenetic profiles
or protein levels.

To our knowledge, Zien et al. (2000) were the first to infer
pathways from a biological network. They construct a bipartite
metabolic network consisting of compound and reaction nodes,
where enzyme-coding genes are linked to reactions via their EC
numbers, and subsequently enumerate all possible paths between
a source node (D-glucose) and a target node (pyruvate) under cer-
tain constraints. The score of each path is computed on the basis
of expression values of the genes involved in this path as measured

*to whom correspondence should be addressed

with microarrays. This method ranks predicted paths according to
their degree of up- or down-regulation.

Ideker et al. (2002) extended this idea to the extraction of more
complex, non-linear sub-networks in protein-protein and protein-
DNA networks given yeast gene expression data. Sub-networks are
considered active whenever they involve highly expressed genes.
Such sub-networks can be identified by sampling the space of
possible sub-networks with simulated annealing. The authors also
mention several strengths of the sub-network extraction approach as
compared to traditional gene clustering, for instance the considera-
tion of genes that are only weakly differentially expressed.

Scott et al. (2005) also search for sub-networks in protein-protein
and protein-DNA interaction networks given gene expression data.
To our knowledge, their algorithm is the first to tackle the Steiner
tree problem (Hwang et al. (1992)) on biological networks in order
to connect nodes of interest (i.e. differentially expressed genes).

Rajagopalan and Agarwal (2005) integrate various data sources
(TransFac, HumanCyc and Ingenuity Pathways Knowledge Base)
into a network of gene-metabolite relationships. Query nodes in
this network are connected by an algorithm based on breadth-first
search. A key contribution of these authors is the systematic evalua-
tion of their subgraph extraction approach on both simulated data
and known pathways taken from BioCarta.

Noirel et al. (2008) apply sub-network extraction to proteomics
data (that is enzyme level ratios, measured by mass spectrometry)
from the cyanobacterium Nostoc. A sub-network is extracted from
a weighted KEGG metabolic network by generating paths around
each up-regulated enzyme node up to a given maximal weight
and subsequently filtering these paths according to the number of
up-regulated enzymes contained in them. The filtered paths are
then merged to form a network whose connected components are
considered as the extracted sub-networks.

Dittrich et al. (2008) identify high-scoring sub-networks in
protein-protein interaction networks with a strategy similar to Scott
et al. (2005), by applying an algorithm that solves the Steiner
tree problem exactly. Interestingly, their method allows to report
sub-optimal solutions with a user-specified distance to previously
listed solutions. The pathway prediction approach is validated on
simulated data.

© Oxford University Press 2009.
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Antonov and co-workers predict metabolic pathways from KEGG
data and from input genes mapped to reactions (Antonov et al.
(2008)) or input compounds (Antonov et al. (2009)). Seed nodes
separated by one edge are added to a growing sub-network, which
may consist of several components. The component covering most
seeds is considered as the inferred pathway. The procedure is repea-
ted for distances of 2,3... edges, resulting in a set of distance-specific
predictions. This sub-network extraction procedure is available via
two web tools specific to metabolic data.

In this article, we present a systematic assessment of sub-network
extraction accuracy given a metabolic network. We evaluate the per-
formance of four different algorithms (combined in seven approa-
ches) on the basis of 71 pathways obtained from MetaCyc. One
of these algorithms (pair-wise K -shortest paths) has been develo-
ped for this study and two other algorithms (Takahashi-Matsuyama,
kWalks) have apparently not yet been applied to sub-network extrac-
tion in biological networks. The extraction techniques considered
here are not specific to metabolic networks or gene expression data.
They can be applied to any biological network and to any data set
generating specific nodes of interest (e.g. functionally related groups
of genes/enzymes as derived from phylogenetic co-occurrence,
operons, gene fusion events etc.).

2 METHODS

2.1 Metabolic network construction

In order to predict metabolic pathways, we need to represent metabolic data
as a network (or a graph, to use the mathematical term). We selected Meta-
Cyc (Krieger et al. (2004)), the well-curated tier of BioCyc (Caspi et al.
(2008)), as our data source, and constructed a bipartite, directed graph from
all small molecule entries and their associated reactions contained in the
OWL file of MetaCyc (Release 11.0). The resulting graph consists of 4,891
compound nodes and 5,358 reaction nodes. As discussed in Croes et al.
(2005), reactions that are annotated as irreversible can be reversed depending
on physiological conditions (substrate and product concentrations, tempera-
ture). Consequently, we represent each reaction as a pair of nodes, for the
forward and the reverse directions, respectively. To prevent the paths-based
algorithms to cross the same reaction twice, forward and reverse direction
are mutually exclusive. After this duplication of reaction nodes, we obtain a
directed network with 15,607 nodes and 43,938 edges, referred hereafter as
the MetaCyc network.

We constructed two variants of the MetaCyc network: the directed one
described above and an undirected network, in which reaction nodes are
not duplicated. In both cases however, the weight matrix is designed to be
symmetric.

2.2 Weight policies

Metabolic networks contain hub compounds such as HoO, NADP and ATP,
which are involved in a large number of reactions. A straightforward graph
traversal algorithm would preferentially cross these compounds, resulting
in biochemically invalid paths that connect for instance D-glucose with
pyruvate in one reaction step via ADP. Available path finding tools (which
extract a sub-network from a single source and target node) try to solve
this problem by considering compound structure (e.g. Arita (2000); McShan
et al. (2003); Rahman et al. (2004); Blum and Kohlbacher (2008)), network
weights (Croes et al. (2005, 2006); Blum and Kohlbacher (2008)), anno-
tated reactant pairs (Faust e al. (2009)) or rules (Ellis et al. (2008)). We
adopted the weighting approach and tested three different weight policies.
The simplest one (“unit weight”) sets all node weights to one. The second
policy (“compound degree weight”) penalizes highly connected compounds
by assigning to each compound a weight equal to its degree, whilst setting to

each reaction a weight of one. The third weight policy (“inflated compound
degree weight”) takes to the power of two the node weights defined by the
second weight policy. The purpose is to enlarge weight differences between
highly and weakly connected compound nodes. For most algorithms, the
node-weighted network had to be converted to an edge/arc-weighted net-
work, by taking for each edge/arc the mean of weights of its two adjacent
nodes.

2.3 Reference pathways

We obtained a selected set of 71 known S. cerevisiae pathways from Meta-
Cyc (Release 11.0). All pathways in this reference set consist of at least
5 nodes and are included in the largest connected component of the Meta-
Cyc network. On average, the pathways are composed of 13 nodes and in
addition, more than half of them are branched and/or cyclic.

2.4 Algorithms

We measured the sub-network extraction accuracy of four different algo-
rithms: three are based on shortest paths (Takahashi and Matsuyama (1980);
Klein and Ravi (1995), pair-wise K -shortest paths) and one is based on ran-
dom walks (Dupont et al. (2006); Callut (2007)). In addition, we combined
the random walks-based approach with each of the three shortest paths-based
approaches, thus testing altogether seven approaches.

2.4.1 Common features of the extraction algorithms All algo-
rithms extract sub-networks by connecting a set of selected nodes (the seed
nodes) in the input network. The problem of connecting seed nodes in
a weighted network such that the weight of the resulting sub-network is
minimized is an instance of the Steiner tree problem which is known to
be NP-complete (Karp (1972)). The Takahashi-Matsuyama, the Klein-Ravi
and pair-wise K-shortest paths algorithms tackle the Steiner tree problem
approximately using different heuristics.

The kWalks approach takes a qualitatively different approach to subgraph
extraction by efficiently computing the set of edges most likely to be used
while walking from a seed node to any other one. The weights in the network
obviously influence the random walks together with the network topology.

2.4.2 Challenges faced by metabolic pathway inference algo-
rithms The metabolic pathway inference algorithms face the following
challenges.

(1) Be able to cope with weighted networks.

(2) Allow the input graph to be directed. In undirected graphs the paths-
based approaches would not make the difference between reaction products
and substrates, and would thus establish artefactual links from substrate to
substrate, or from product to product. This requirement is not met by the
implementation of Klein-Ravi used for evaluation.

(3) Treat forward and reverse direction of reactions as mutually exclusive.
Without mutual exclusion of forward and reverse reaction direction nodes,
the same reaction may appear twice in a shortest path. The kWalks method
does not distinguish between forward and reverse reactions because it is not
based on the explicit computation of paths.

(4) Be able to process seed node groups instead of seed nodes. The reac-
tion mechanism(s) of an enzyme is (are) usually described by its EC num-
ber(s). But this annotation is ambiguous, because reactions with the same
EC number may differ by their co-factor or by their substrate. For instance,
homoserine dehydrogenase with EC number 1.1.1.3 converts L-homoserine
into L-aspartate 4-semialdehyde. There are two reactions associated to this
EC number (having either NAD+ or NADP+ as a co-factor), but only one
of these may actually occur in the pathway to be inferred. An algorithm
handling seed node groups can treat all reactions of EC number 1.1.1.3
as belonging to the same group. As soon as one of the group members
is connected to the sub-network, the seed node group is considered to be
connected as well. To address this last requirement, we applied the graph
transformation suggested by Duin et al. (2004). The idea is to introduce
pseudo nodes, which connect all members of a seed node group in the input
graph. Thus, when we mention seed nodes, these nodes may be artificial




Pathway discovery

nodes that represent a group of seeds considered as equivalent, and from
which only one has to be included in the result.

Each algorithm takes as input the graph, the seed nodes and a weight
policy. kWalks requires additional parameters discussed in section 2.4.6.

We will first discuss the shortest paths-based approaches. Except for
Klein-Ravi, they rely on the REA algorithm (Jimenez and Marzal (1999))
to compute K -shortest paths. REA enumerates all paths between a start and
an end node in the order of their length. In a weighted graph, paths are listed
in the order of their weight. Note that according to the definition of a path,
a node can occur only once in the path. The value of K is dynamically set
such that all paths of minimal weight are collected. The paths returned by
REA are filtered to avoid paths containing mutually exclusive nodes.

The computational complexities of all algorithms described below are
expressed in terms of n and m, respectively the number of nodes and edges
in the input graph, as well as s, the number of seed nodes.

2.4.3 Klein-Ravi The algorithm by Klein and Ravi (1995) is a heuri-
stic to solve the node-weighted variant of the Steiner tree problem. First, the
distance between any node pair in the graph is obtained with an all-to-all
shortest paths algorithm such as Dijkstra (1959). A set of trees is considered
where each tree initially consists of a single seed node. At each step of the
algorithm, a node and a subset of the remaining trees are selected such that
the cost of tree merging is minimized. At least two trees have to be merged
in each step. The cost of tree merging is computed as the sum of the weight
of the selected node and the weights of the shortest paths between the selec-
ted node and the selected tree subset. This sum is divided by the number
of trees in the selected subset. The algorithm terminates when all trees are
merged. The same implementation as in Scott ez al. (2005) has been used to
evaluate this algorithm. The implementation was kindly provided by Nadja
Betzler (Betzler (2005)). The computational complexity of this approach is
O(n?logn + nm + nslogs).

2.4.4 Takahashi-Matsuyama The algorithm by Takahashi and Mat-
suyama (1980) initializes the sub-network with a node chosen at random
among the s seeds. It then proceeds by identifying in each step the lightest
path(s) between any of the remaining seed nodes and any node in the sub-
network (note that pseudo nodes can be introduced to treat all nodes in the
sub-network as equivalent start nodes and all remaining seed nodes as equi-
valent end nodes). The lightest path(s) is merged with the sub-network. The
computational complexity of this approach is O(s(m + Knlog(m/n))).

2.4.5 Pair-wise K-shortest paths In the first step, REA is called suc-
cessively on each pair of seed nodes. The resulting path sets are stored in a
path matrix, and the minimal weight between each node pair is stored in a
distance matrix. In the second step, the sub-network is constructed from the
path sets, starting with the lightest path set. Step-wise, path sets are merged
with the subgraph by increasing order of their weight. The process stops if
either all seeds belong to one connected component of the sub-network or
all path sets have been merged with the sub-network.

The computational complexity of this approach is O(s?(m +
Knlog(m/n)), because the REA algorithm is called O(s?) times.

2.4.6  kWalks The kWalks method is a generic algorithm (Dupont et al.
(2006)) to build a most relevant subgraph connecting seed nodes in a large
graph, in the present case a metabolic network. The subgraph contains the
most relevant edges and the nodes induced by those edges. The relevance
of an edge is measured as the expected number of times it is visited along
random walks connecting seed nodes. These expected passage times reflect
both the topology of the network and the edge weights. They follow from
an interpretation of the graph as a Markov chain (Kemeny and Snell (1983))
characterized by a transition probability matrix P.

The probability of transition from node 7 to node j is given by P;; =

il where w;; denotes the weight assigned to the edge ¢ — j. For each
3 Wi
seed node x, the sub-matrix “P denotes the transition probability matrix

restricted to the lines and columns associated to x and all non-seed nodes.

Expected passage times can be computed from the fundamental matrix
N = (I —*P)~1. The entry *N,;

gives the expected number of times node ¢ is visited during walks starting
in z and ending in any other seed node. The expected passage times * E (4, j)
along an edge ¢ — j is obtained by multiplying *IN,;; with the transition
probability P;;. Finally, the relevance of an edge i — j is obtained by
averaging ¥ E(4, j) over the s seed nodes.

A straightforward implementation of the kWalks algorithm is computa-
tionally demanding for a large graph: its complexity is O(sn3), since it
would rely on s matrix inversions for a graph with n nodes. In practice, the
fundamental matrix can however be approximated by limiting the walks to a
maximal number of L steps and using forward-backward recurrences (Callut
(2007)). The computational complexity of the bounded kWalks is O (sLm).
Since s, the number of seed nodes, as well as L are typically fixed and have
values orders of magnitude lower than m, this approach essentially offers a
linear time complexity with respect to the number of graph edges. Bounding
the walk length is not only convenient from a computational viewpoint, it
also allows to control the level of locality (or, conversely, the level of diffu-
sion through the network) while connecting seed nodes. In all the reported
experiments, L was fixed to 50 based on preliminary evaluations (Dupont
et al. (2006)).

As such the kWalks algorithm computes edge and node relevance from
random walks connecting the seed nodes. A subgraph is obtained by keeping
only those edge above a minimal relevance threshold. In our experiments, the
relevance threshold is automatically fixed such that the subgraph induced
by the selected edges is weakly connected. The sub-networks extracted by
kWalks may contain branches ending in non-seed nodes. We remove these
branches in a final pruning step.

The edge relevances computed by kWalks can serve as new edge weights.
kWalks can then be run on the input graph with updated weights. This itera-
tive process may be repeated a number of times to increase the discrimination
between more and less relevant edges.

2.4.7 Hybrid approaches On one hand, the kWalks approach is desi-
gned to be more sensitive than specific by returning a sub-network whose
edges are more likely to be used along walks connecting the seed nodes.
Such a sub-network may be significantly smaller than the initial network yet
not highly specific to form relevant pathways. On the other hand, the compu-
tational complexity of path-based approaches may prevent them from being
effective when applied to a large network. Those observations motivate the
use of an hybrid strategy where the kWalks method is combined with paths-
based algorithms. Such a hybrid approach runs in two steps: kWalks extracts
a sub-network representing a fixed proportion of the input network and the
shortest-path based algorithm is launched on this intermediate sub-network
to obtain the final pathway.

Combining kWalks with path-based approaches requires two new para-
meters: (1) Size of the sub-network kWalks extracts a sub-network whose
size is fixed to a given percentage of the number of nodes in the input net-
work. In our experiments, this parameter is usually fixed between .5% and
5%. The extracted sub-networks tend to be larger than with the weak connec-
tivity constraint but are subsequently filtered with a path-based approach. (2)
Input or computed weights The path-based algorithms may either use the
input weights or the edge/node relevances computed by kWalks.

2.5 Evaluation procedure

2.5.1 Accuracy of sub-network extraction Each pathway inference
algorithm receives as seed nodes a varying number of reactions of the known
pathway. The accuracy of the algorithm is then calculated based on the over-
lap between the extracted sub-network (that is the inferred pathway) and the
reference pathway.

‘We define as true positive 7' P a non-seed node that is present in the refe-
rence as well as the inferred pathway. A false negative F'IN is a non-seed
node present in the reference but missing in the inferred pathway and a false
positive F'P is a non-seed node found in the inferred pathway but absent
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from the reference. The sensitivity Sn is defined as the ratio of correctly
inferred nodes versus all reference nodes:

Sn = (T%F;’N)’ whereas the positive predictive value PPV gives
the ratio of correctly inferred nodes versus all inferred nodes: PPV =

%. We calculate the accuracy as the geometric mean between

sensitivity and positive predictive value (Accy = v Sn x PPV).

2.5.2 Experiments For each reference pathway, several inferences (i.e.
sub-network extractions) are performed, with increasing seed node number,
in order to test the impact of the seed node number on the accuracy of the
result. For each of the 71 reference pathways, we first select the terminal
reactions as seeds, we infer a pathway that interconnects them, and we com-
pare the nodes of the inferred pathways with those of the annotated pathway.
Then, we progressively increase the number of seeds by adding reactions
randomly selected from the reference pathway, and re-do the inference and
evaluation, until all reactions of the pathway are selected as seeds. We define
as one experiment the set of all the pathway inferences performed for a given
parameter value combination (e.g. pair-wise K -shortest paths on directed
MetaCyc network with compound degree weight). In total, we carried out
108 such experiments.

3 RESULTS
3.1 Global performance of pathway inference
algorithms

3.1.1 Comparison of algorithms The average geometric accu-
racy of a selected number of experiments is listed in Table 1. The
full experiment table is available as supplementary Table ST1. The
strategy resulting in the highest accuracy combines the Takahashi-
Matsuyama algorithm with kWalks. The top experiments all involve
a compound-weighted, directed MetaCyc network and, in case of
the kWalks algorithm, an iteration number larger than one.

The performance of paths-based algorithms in the unweighted
(unit weight), directed MetaCyc network is at most 53% whereas
kWalks (without iteration) reaches an average accuracy of 62% in
the same conditions. Hence kWalks is able to assign edge rele-
vances even without a dedicated weight policy for the problem at
hand, such as the compound degree weighting scheme for metabo-
lic networks. All approaches however benefit from such a dedicated
weight policy.

In the pair-wise K-shortest paths/kWalks hybrid approach,
kWalks is configured to extract 5% of the input network. If this
percentage is reduced to 0.5% (the optimum among 22 different
sub-network sizes tested), the average accuracy increases by 3%.
Obviously, the size of the intermediate sub-network should not go
below a certain limit as it should be large enough to contain a
metabolic pathway.

Combining a paths-based algorithm with kWalks tends to reduce
its runtime. Supplementary Figure SF1 compares run-times for all 7
pathway inference algorithms.

3.1.2  Influence of parameter setting We measured the impact
of alternative parameter values over a subset of the experiments
as measured by a paired signed Wilcoxon rank test (Supplemen-
tary Table ST2). The parameter values having highest impact
on the pathway inference accuracy are in this order: compound
degree weight and inflated compound degree weight outperform unit
weight, directed network outperforms undirected network, kWalks
supersedes hybrid approaches and three kWalk iterations are better
than a single run.
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Fig. 1. Pathway inference results for the pyrimidine ribonucleotides de
novo biosynthesis pathway (MetaCyc identifier: PWYO0-162) in E. coli. (A)
Reference pathway. (B) Pathway inferred with two seeds in the compound-
weighted, directed MetaCyc network. (C) Pathway inferred with four seeds
in the same network. Ellipses represent compounds, rectangles reactions.
Compounds and reactions are labeled with their MetaCyc identifiers in capi-
tal letters, compounds in addition with their name and reactions with their
associated EC number. Seed nodes have a blue border, true positive nodes a
green and false positives an orange border.

The superiority of the other two weighting schemes over unit
weights is in agreement with previous results (Croes et al. (2005,
2006)), which show that weighting the metabolic network avoids
irrelevant hub compounds. It is also no surprise that the directed
MetaCyc network yields higher accuracies than the undirected one,
because the directed network prevents the traversal from substrate
to substrate or from product to product.

It might seem surprizing that when all experiments are taken
together, kWalks alone outperforms the pair-wise K -shortest paths
hybrid, whereas the 5 top-raking approaches rely either on hybrid
approach or path finding alone. The reason is that kWalks, as explai-
ned above, deals well with the unit weight policy, whereas the
hybrid only performs well if it can either use weights generated
by kWalks or by a weight policy that penalizes hub compounds.
However, if run with optimal parameter values, both algorithms are
among the top experiments (see Table 1). Iterating kWalks impro-
ves the accuracy, as it increases the difference between relevant and
irrelevant edges.

3.2 Study cases

All study cases were inferred with the hybrid algorithm combi-
ning Takahashi-Matsuyama and kWalks in the directed, compound-
weighted MetaCyc network.

Since we cannot infer reaction directions due to the way we
constructed the MetaCyc network, inferred pathways are displayed
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Fig. 2. Pathway inference results for the superpathway of lysine, threonine and methionine biosynthesis I (MetaCyc identifier: P4-PWY) in E. coli. (A) Refe-
rence pathway. (B) Pathway inferred with the five terminal reactions as seeds in the compound-weighted, directed MetaCyc network and Figure. (C) Pathway
inferred with the terminal and two additional intermediate reactions in the same network. Ellipses represent compounds, rectangles reactions. Compounds and
reactions are labeled with their MetaCyc identifiers in capital letters, compounds in addition with their name and reactions with their associated EC number.
Seed nodes have a blue border, true positive nodes a green and false positives an orange border.

Table 1. Selected set of experiments, their conditions and results. Each table row represents one experiment. Each experiment was performed on
71 reference pathways with varying seed reaction number, comprising 406 launches of the tested pathway inference algorithm for the indicated
conditions. Abbreviations: PPV = positive predictive value, acc.g = geometric accuracy

Algorithm | kWalks Size of Weighting | Directed | kWalks | Mean Sn | Mean PPV | Mean
iteration | sub-network scheme graph | weights in % in% | acc.g
number | extracted by re-used in %
kWalks in %

Takahashi-Matusyama/kWalks 1 5 | Compound degree TRUE | FALSE 77.13 7797 | 76.81
Takahashi-Matsuyama 0 - | Compound degree TRUE - 75.90 77.25 | 75.83
pair-wise K -shortest paths/kWalks 1 0.5 | Compound degree TRUE | FALSE 68.89 78.90 | 71.79
pair-wise K -shortest paths/kWalks 6 5 | Compound degree TRUE | FALSE 70.20 69.10 | 68.22
pair-wise K -shortest paths 0 Compound degree TRUE - 69.95 68.73 | 68.03
kWalks 3 - | Compound degree TRUE - 71.49 68.54 | 67.96
kWalks 6 - | Inflated compound TRUE - 71.06 68.62 | 67.90

degree
pair-wise K -shortest paths/kWalks 3 5 | Compound degree TRUE | FALSE 69.19 69.37 | 67.86
Klein-Ravi/kWalks 1 5 | Compound degree | FALSE | FALSE 63.21 68.03 | 64.10
kWalks 3 Unit TRUE - 61.40 71.33 | 64.30
kWalks 6 - Unit TRUE - 60.00 71.75 | 63.53
Klein-Ravi 0 - | Compound degree | FALSE - 62.55 66.27 | 63.05
kWalks 1 - Unit TRUE - 62.13 6593 | 61.83
pair-wise K-shortest paths/kWalks 1 5 Unit TRUE | TRUE 46.91 69.38 | 55.32
Takahashi-Matsuyama 0 Unit TRUE - 60.02 53.83 | 52.74
pair-wise K -shortest paths 0 - Unit TRUE - 71.37 35.87 | 42.86

as undirected graphs. The annotated pathways have been obtained
from EcoCyc version 13.1 (Keseler et al. (2009)).

pathway in E. coli produces CDP from L-glutamine in a series of 10
subsequent reaction steps (Figure 1A).

Two-end path finding results in a metabolic pathway that bypasses
a large segment of the annotated pathway by taking a shortcut via
L-glutamine (Figure 1B). Consequently, the geometric accuracy is
low (28%).

3.2.1 De novo synthesis of pyrimidine ribonucleotides in Esche-
richia coli The de novo synthesis of pyrimidine ribonucleotides
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With two additional seed nodes (Figure 1C), a large part of the
reference pathway is recovered (geometric accuracy reaches 59%).

Not surprizingly, the result is more accurate when more infor-
mation can be provided in the form of additional seed nodes. Such
additional information could however add spurious paths between
seed nodes, hence decreasing PPV, but the overall effect is clearly
positive in this case.

3.2.2 Lysine, threonine and methionine biosynthesis in Escheri-
chia coli The previous example illustrates the benefit of multi-seed
pathway inference in the case of linear pathways. Another inte-
rest of the approach is its capacity to deal with branched metabolic
pathways or super-pathways.

The lysine, threonine and methionine biosynthesis super-pathway
of E. coli is a good example of a branched pathway that cannot be
treated with two-end path finding (Figure 2A). This pathway starts
from Oxaloacetate, the common precursor of the three amino acids
L-lysine, L-methionine and L-threonine. The pathway is linear up to
L-aspartyl-semialdehyde, after which it banches towards the three
different end products. The synthesis of L-aspartyl-semialdehyde
from L-aspartate is catalyzed by three isoenzymes (aspartate kinase
I, I and III), each being negatively regulated by one of the three
final products, thereby ensuring differential feedback inhibition.
The annotated pathway consists of 18 reactions and 14 compounds,
not counting the terminal compounds oxaloacetate, L-lysine, L-
methionine and L-threonine.

Given the terminal reactions with MetaCyc identifiers
ASPAMINOTRANS-RXN, THRESYN-RXN,
DIAMINOPIMDECARB-RXN, HOMOCYSMETB12-RXN
and HOMOCYSMET-RXN, the pathway shown in Figure 2B is
inferred from the MetaCyc network. It recovers large parts of the
reference pathway, but misses parts of the annotated lysine and
threonine branches, resulting in a geometric accuracy of 65%.

However, the inferred lysine branch is a biochemically
valid metabolic pathway, which is known to be active e.g.
in Clostridium tetani (MetaCyc pathway identifier: PWY-
2942). Additional seed reactions are needed to distinguish
the E. coli variant of lysine biosynthesis from this alterna-
tive. When repeating pathway inference with 2 additional reac-
tions from the lysine branch (DIAMINOPIMEPIM-RXN and
SUCCINYLDIAMINOPIMTRANS-RXN), the E. coli lysine bio-
synthesis pathway is found (see Figure 2C) and the geometric
accuracy reaches 85%.

In practice, changes in the expression of regulated enzymes may
reveal intermediate steps of a pathway. For instance, microarray
experiments may reveal clusters of enzymes showing a transcrip-
tional response to a given condition. Such expression clusters
are likely to include terminal as well as intermediate enzymes,
such as the gene argD associated to the intermediate seed reac-
tion SUCCINYLDIAMINOPIMTRANS-RXN, which is negatively
regulated by the transcription factor ArgR.

4 DISCUSSION

In this article, we presented different sub-network extraction tech-
niques that can be applied to predict metabolic pathways from

metabolic networks on the sole basis of network topology. The per-
formance of these techniques was studied in metabolic networks,
but they could be applied to any biological network.

From our evaluation we can conclude that a combination of
Takahashi-Matsuyama and kWalks is globally most suited for the
extraction of sub-networks from metabolic networks. The eva-
luation also shows that a directed, weighted metabolic network
performs better than an undirected, unweighted one. Consequently,
if a good weight policy for the metabolic network under study is
at hand, it should be given as input to both algorithms, else the
path-based algorithm can be launched on the weights computed by
kWalks. The accuracy of pathway inference can be further increased
by iterating kWalks and/or by reducing the size of the sub-network
extracted by kWalks in the first step of the hybrid.

The hybrid approach combines the strengths of two different sub-
network extraction strategies: kWalks is designed to capture the part
of a network that is most relevant to connect the given seed nodes,
resulting in a high sensitivity, but at the cost of a low positive pre-
dictive value. False positives introduced by kWalks can be discarded
by a more stringent shortest paths-based algorithm.

Metabolic sub-network extraction can be applied to predict meta-
bolic pathways for an organism whose genes are functionally anno-
tated but whose metabolism is not yet known. In such a case, a
network constructed from metabolic information taken from related
organisms might be more appropriate than a complete metabo-
lic network containing all known reactions and compounds in a
given database as in this study. There are two ways to construct an
organism-specific metabolic network: The first is to simply build the
network from reactions occurring in the selected set of organisms. In
a less restrictive approach, the complete network could be weighted
in such a way that reactions occurring in the given organisms are
favored over other reactions. Similarly, gene expression and other
high-throughput data could be taken into account during network
construction by converting expression ratios (or other scores derived
from the data set) into node weights.

Pathway prediction could be further improved by taking into
account the compound structure and atom flow through a reaction in
order to distinguish main from side compounds. The RPAIR data-
base available in KEGG provides the information required for this
(Kotera et al. (2004a,b)). For two-node path finding, we already
quantified the improvement due to RPAIRs (Faust et al. (2009)).
First tests showed a similar improvement for sub-network extrac-
tion with multiple seeds in the RPAIR network as compared to the
MetaCyc network.

Our pathway prediction approach is subjected to a number of
limitations. Path-based approaches only partly infer cyclic or spiral-
shaped pathways (the same enzymes acting repeatedly on a growing
chain, e.g. fatty acids biosynthesis). kWalks alone is able to return
general subgraphs but possibly at the cost of decreasing specificity.
For certain pathways situated in the densely interconnected region
of the metabolic network (such as the TCA cycle and the glycoly-
sis pathway), a large number of seed nodes is required in order to
distinguish them from alternative pathways. In addition, prediction
accuracy is of course dependent on data quality. In order to infer
a metabolic pathway from a metabolic network, the network must
contain all nodes and edges of the pathway.

We rely on a topological definition that considers a metabolic
pathway as a specific part of a metabolic network (e.g. Forst and
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Schulten (1999)). This definition covers all classical pathways des-
cribed in the literature, but also includes pathways that are not
biochemically valid in contrast to stoichiometry-centered definiti-
ons (e.g. elementary modes, extreme pathways, see Schilling et al.
(2000)). A revised definition of metabolic pathway could influence
and possibly improve pathway prediction tools, but this objective is
beyond the scope of the present article.

In a future application, we will apply the techniques evaluated
in this article to gene expression data as well as operons, fusion
genes and other data sets featuring genes assumed to be functionally
related. This requires testing different scoring schemes in order to
measure the quality of the predicted pathway.

The pathway inference algorithms were added to NeAT (Brohée
etal. (2008)) athttp://rsat.ulb.ac.be/neat/. A generic
kWalks implementation is freely available at
www.ucl.ac.be/mlg/index.php?page=Softwares.
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4 Application of pathway discovery
to a gene expression data set
from S. cerevisiae

The previous chapters (2 and 3) presented the development and evaluation of two-end and
multiple-end pathway prediction approaches. In this chapter, multiple-end pathway prediction
is applied to a microarray study conducted on S. cerevisiae.

4.1 Biological background

S. cerevisiae is capable to grow on a variety of nitrogenous compounds as sole nitrogen source,
among others ammonium and urea. The nitrogen required in anabolic reactions is provided
by glutamine and glutamate, the major nitrogen donors in yeast, which are either imported
from the environment or derived from catabolic reactions of other nitrogenous compounds.
Thus, yeast cells can survive on a single nitrogen source by metabolizing it directly and/or by
degrading it to ammonium, glutamate or both. From ammonium and glutamate, glutamine can
be synthesized, which can then serve together with glutamate as nitrogen donor for anabolic
reactions.

4.2 Gene expression data set

In order to elucidate the response of yeast cells to the presence of alternative nitrogen sources,
Godard et al. performed a gene expression study, which measured the effects of 21 different
nitrogen sources on the gene expression in S. cerevisiae [63].

In the original article, the experiment was conducted and the resulting data processed in the
following way:

1. Yeast cells were grown on each of the 21 compounds as sole nitrogen source and the
expression of all 5,690 yeast genes was quantified.

2. Gene expression ratios were calculated for each of the 20 nitrogen sources as the log-
ratio between gene expression given the nitrogen source and gene expression given urea
as nitrogen source (considered as reference).

3. Genes with a P-value of differential expression below 1/5,690 were discarded to correct
for multiple testing. The P-value was calculated with the SAM method [160].
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4. A matrix of expression ratios was obtained consisting of 20 columns (for the 20 nitrogen
sources) and 390 rows (all genes significantly differentially expressed for at least one
nitrogen source and with expression ratios obtained for at least 13 nitrogen sources).

5. Hierarchical clustering of this matrix (see Figure 4.1) revealed two main groups, where
group A contains good nitrogen sources (which allow generation times ~2h) and group
B bad nitrogen sources (which support only slow growth). The 20 sources and their
groups are listed in Table 4.1, where group C refers to all nitrogen sources that neither
clustered with group A nor with group B nitrogen sources.

[T,

hﬂ Cluster 6
I Cluster 7

E Cluster 4
Cluster 5
d Cluster 8

M Cluster 2

2 R 2
M scale
Figure 4.1: Gene expression ratio matrix re-arranged according to the outcome of the "complete

linkage" cluster algorithm. The distances were calculated as the average dot product between gene
expression profiles. Reproduction of Figure 2A from Godard et al., [63].
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Table 4.1: Groups of nitrogen sources: A = good sources, B = bad sources, C = all other sources.
Nitrogen source Group
(Abbreviation)
asparagine (asn)
glutamine (gln)
serine (ser)
ammonium (amm)
aspartate (asp)
alanine (ala)
arginine (arg)
glutamate (glt)
valine (val)
phenylalanine (phe)
ornithine (orn)
proline (pro)
GABA (gab)
citrulline (cit)
leucine (leu)
isoleucine (ile)
methionine (met)
threonine (thr)
tryptophan (trp)
tyrosine (tyr)

The reference nitrogen source urea is stated
in [63] to belong to the poor nitrogen sources.

WHWmmmIOOOOQOOQQ Q> > > > > > >
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4.3 Data processing

Given the results of Godard’s experiments, I did the following analysis steps for each nitrogen
source separately:

1.

The distribution of gene expression ratios (i.e. the ratio between the gene expression
value in the presence of the investigated nitrogen source with respect to urea) was plotted
to check whether it approximates a Gauss distribution (see Figure 4.2). This was the case
for all nitrogen sources.

. Mean and standard deviation of the gene expression ratio distribution were robustly

estimated with the median and interquartile range (IQR) using an R script written by
Jacques van Helden.
M,',jfmedian(Mj)

iqr(M;)/k
M; ; is the expression ratio of gene i for nitrogen source j; M; denotes the vector of all

expression ratios obtained for nitrogen source j (with 5,690 entries); k is a normalizing
constant to estimate the standard deviation from the igr !. The effect of the standard-
ization is to convert a normal distribution A/(u, o) into a standard normal distribution
A(0,1), i.e. a distribution centered on 0 and with a unit standard deviation. The stan-
dardized expression ratios are referred to as z-scores.

The gene expression ratios were standardized as follows: z; ; = , where

. Each z-score z; ; is then converted into a nominal P-value by calculating the right tail

of a normal distribution. The P-value Pval; ; is an estimation of the probability for a
given gene (i) to reach by chance a given z-score (z; ;) in a given microarray experiment
(j). It is interpreted as the risk of false positive, i.e. the fact to erroneously consider as
significant the expression ratio of a given gene i on a given microarray j.

. For a large number of statistical tests (5,690 in this case), it is very likely that a test

rejects the null hypothesis (i.e. no differential expression of a gene) by chance. For
this reason, P-values are corrected for multiple testing using the Bonferroni correction,
which converts P-values into E-values by multiplying each P-value with the number of
tests performed, i.e. with the number of genes (g = 5,690):

Eval = Pval - g

. Finally, groups of up- and down-regulated genes are obtained by setting a threshold

on the E-value. This is done separately for genes with positive z-scores (up-regulated)
and negative z-scores (down-regulated), so that two gene groups are obtained for each
nitrogen source. The E-value threshold was set to one, to restrict the number of genes
falsely regarded as differentially expressed to one by nitrogen source. Since only a
sub-set of all genes (namely the enzyme-coding genes) is considered for analysis, this
threshold is sufficiently stringent to avoid false positives in most cases while preventing
a loss of relevant enzymes.

'k = gnorm(0.75) — gnorm(0.25) = 1.349
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After these processing steps, 20 up- and 20 down-regulated genes groups were obtained.
Table 4.2 summarizes the number of enzymes and their associated reactions and main reac-
tant pairs for each gene group.

Table 4.2: Numbers of genes, enzymes and reactions associated to each gene group for an E-value
threshold set to one

Gene Number of | Number of | Number of EC | Number of | Number of main
cluster genes of enzymes numbers reactions reactant pairs
ala_up 82 26 24 121 116
ala_down 84 24 25 88 71
amm_up 54 19 17 86 75
amm_down 66 21 22 88 78
arg_up 37 16 14 86 76
arg_down 66 19 21 53 56
asn_up 50 19 17 97 101
asn_down 95 33 34 106 92
asp_up 69 25 23 160 145
asp_down 48 12 14 28 24
cit_up 61 25 23 92 90
cit_down 27 6 6 31 25
gab_up 40 19 16 71 57
gab_down 71 19 22 79 58
gln_up 57 15 14 65 72
gln_down 69 26 28 80 78
glt_up 56 18 15 58 49
glt_down 64 24 25 109 94
ile_up 69 21 20 79 85
ile_down 23 6 6 34 24
leu_up 103 39 34 106 104
leu_down 26 9 8 17 16
met_up 119 49 45 179 200
met_down 33 9 10 41 33
orn_up 66 22 20 116 126
orn_down 39 14 14 57 52
phe_up 103 29 27 166 173
phe_down 24 4 4 10 13
pro_up 71 20 18 106 106
pro_down 32 9 11 18 17
ser_up 47 17 16 69 70
ser_down 59 17 18 65 73
thr_up 98 27 27 50 62
thr_down 16 2 2 2 3
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Table 4.2: Numbers of genes, enzymes and reactions associated to each gene group for an E-value
threshold set to one

Gene Number of | Number of | Number of EC | Number of | Number of main
cluster genes of enzymes numbers reactions reactant pairs
trp_up 121 47 38 136 138

trp_down 21 3 3 21 20
tyr_up 96 35 31 138 136
tyr_down 14 4 4 24 24
val_up 73 24 22 88 89
val_down 27 9 9 46 51

Distribution of expression ratios for GABA versus urea, fitted by Gauss distribution

observed
— fitted

-2 0 2 4
gene expression ratios

Figure 4.2: Distribution of gene expression ratios for GABA as sole nitrogen source with respect to
urea. The blue line represents the Gauss distribution whose mean is estimated by the median of the gene
expression ratios and whose standard deviation is estimated by their interquartile range. The estimated
Gauss distribution describes well the gene expression ratio distribution. The Figure was generated with
an R script written by Jacques van Helden.
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4.4 Gene-to-reaction mapping

In order to predict a pathway from a group of genes, the genes have to be linked to their
reactions first. As discussed in the Introduction, section 1.3.3, a many-to-many relationship
exists between genes and reactions. Often, there is no direct link in the database from the
enzyme-coding gene to the reactions its product catalyzes. In this case, reactions have to be
obtained indirectly via the gene’s EC number(s).

This complex relationship between genes and reactions poses several difficulties. First,
an enzyme-coding gene may be connected to one or several EC numbers. In general, genes
annotated with more than one EC number code for multifunctional enzymes, whose multiple
catalytic sites are involved in the same pathway (e.g. the peroxisomal multifunctional enzyme
type 2 in bile acid biosynthesis in rat). However, not all EC numbers associated to a gene
are necessarily involved in the same pathway. For instance, the gene argD is associated to
two EC numbers: 2.6.1.17 and 2.6.1.11. Of these two, only 2.6.1.17 contributes to the lysine
biosynthesis pathway (MetaCyc identifier: DAPLYSINESYN-PWY), whereas 2.6.1.11 (but
not 2.6.1.17) plays arole in the arginine biosynthesis pathway (MetaCyc identifier: ARGSYN-
PWY).

Second, each EC number is linked to one or more reactions. For example, EC number
1.1.1.1 (conversion of an alcohol into an aldehyde or ketone) is associated to 18 reactions in
KEGG, out of which only one may be relevant for the pathway to be predicted. However,
selecting only one out of a group of reactions associated to an EC number is not always a
good strategy, because several EC numbers contribute more than one reaction to a pathway
(this is the case for seven out of 55 reference pathways annotated in aMAZE for E. coli).

It is therefore an open question how reactions associated to genes should be grouped. Seed
reactions can be grouped on the level of the genes, EC numbers or reactions, but as discussed,
none of these groupings is correct in all cases. To evaluate which of these grouping strategies
is correct in most cases, I performed a comparative evaluation on the 55 aMAZE E. coli
pathways for two of them. The first strategy, called reaction grouping, treats all the reactions
obtained from the enzyme-coding genes of a reference pathway as separate groups, whereas
the second strategy, named EC grouping, treats each of the EC numbers of a reference pathway
as a separate group, thus introducing an AND relationship between reactions in different EC
number groups and an OR relationship between reactions belonging to the same EC number.
Figure 4.3 illustrates the two grouping strategies.

In the first step of the evaluation, annotated genes of a reference pathway were mapped to
their corresponding reactions. The reactions were then grouped into seed groups according to
the selected grouping strategy. Next, the pathway was predicted from the seed reaction groups.
Finally, the accuracy of the predicted pathway was computed. These steps were carried out
for 55 pathways. Figure 4.4 illustrates this evaluation procedure.

Table 4.3 summarizes the results of this evaluation. The average accuracies are much lower
than those obtained for two-end path finding evaluation (see chapter 2) for three reasons:

e Pathways were not linearized.

e Terminal compounds were not removed.
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A Enzyme-to-reaction Mapping

Enzyme EC number Reactions Reaction equations

i . Phosphoribosyl-formimino-AICAR-phosphate <=>
™5 R04640 Phosphoribulosyl-formimino-AICAR-phosphate

B 42119 |- - - - | R03457 D—grylhro—Imldazole—glycerol phosphate <=>
. - Imidazole-acetol phosphate + H,O
hisB |
T L-Histidinol phosphate + H,O <=> L-Histidinol
3.1.3.15 [ ----%|R03013
+ Orthophosphate

L-Histidinal + HyO + NAD* <=> L-Histidine +

,, R01163
1 1.1.23 NADH + H*
R03012 stidi + stidi +

L-Histidinol + NAD" <=> L-Histidinal + NADH + H

RO1158 L-Histidinol + 2 NADT + H,0O <=> L-Histidine +

2NADH +2H'

B EC grouping

/”’——\\\
1 \‘ o
LTS : R03457 1 .7 AN
N ! p \
/ \ W ~ / \
" R04640 li S -7 y R03013 ll
'/
\\ » - R .
\\\
RO1163 5

1 \

1 1

1

\ [ Ro3012 | [Ro1IS8 |/
\\ ///

/
S -7 -
.
/
/
’

C Reaction grouping
//’—“\\ //’—“\\ //’—“\\
’ \ / ’

\ \ \

U |Ro4640 |1 [|Ro3457 |\ 1|Ro3013 |)

\ FE oA !
AN e AN IR AN "
//’ ‘\\ //’ ‘\\ (// \\\
\

" |Rot163 |1 !|Ro3012 |V ! [ROIISS |
\ P F; ’
\ 4 \ 4 AN e

Figure 4.3: As an example, three selected enzymes from the histidine biosynthesis pathway are linked
to their respective EC numbers and reactions (A). The EC grouping strategy groups reactions according
to their EC numbers. In this example, four seed groups result, corresponding to the four EC numbers
associated to the three enzymes (B). The reaction grouping strategy instantiates one group for each
reaction. Thus, six seed groups result (C).
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Reference pathway

(Alanine biosynthesis) Predicted pathway

R00401

(5.1.1.1 [b4053:b1190])
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(C00041)
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Figure 4.4: Procedure for the evaluation of reaction grouping strategies. The evaluation starts with
a reference pathway (A). The genes of the reference pathway are mapped to reactions (B), which are
grouped according to the strategy to be evaluated. In the example shown, reactions are grouped EC
number-wise. From the seed reaction groups, a pathway is predicted (C), which is then compared to
the reference pathway.
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Table 4.3: Evaluation of seed reaction grouping strategies on 55 aMAZE pathways from E. coli

| Network | Grouping strategy | Average geometric accuracy in % |
KEGG LIGAND | Reaction groups | 45
KEGG LIGAND | EC groups 44
KEGG RPAIR Reaction groups | 47
KEGG RPAIR EC groups 50

Table 4.4: P-values of the paired signed Wilcoxon rank test for the two networks and grouping strate-

gies. The number of pathways predicted with different accuracies is given in brackets.

LIGAND LIGAND RPAIR RPAIR

EC groups | reaction groups | EC groups | reaction groups
LIGAND EC groups - 0.4 (35) 0.079 (32) 0.63 (39)
LIGAND reaction groups | 0.4 (35) - 0.19 (35) 0.47(36)
RPAIR EC groups 0.079 (32) 0.19 (35) - 0.39 (40)
RPAIR reaction groups 0.63 (39) 0.47 (36) 0.39 (40) -

e Gene-to-reaction mapping sometimes yields reactions that do not occur in the pathway
(e.g. in Figure 4.4 reactions RO1090 and R02199) and which may introduce false posi-
tive branches.

Table 4.4 lists the results of a paired signed Wilcoxon rank test, which was performed in
order to check whether the accuracy difference between two networks or mapping strategies
is significant.

From the evaluation, it can be concluded that:

e There is no significant difference between EC groups and reaction groups for the KEGG
LIGAND network.

e There is no significant difference between EC groups and reaction groups for the KEGG
RPAIR network.

e There is no significant difference between the KEGG LIGAND and RPAIR networks for
the reaction grouping strategy, but for the EC grouping strategy, KEGG RPAIR performs
significantly better than the KEGG LIGAND network.

Since the average geometric accuracy was highest for EC groupings in the KEGG RPAIR
network, this grouping strategy and network was selected for pathway prediction.
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4.5 Multiple-end pathway prediction parameters

4.5.1 Metabolic network

From the evaluation of gene-to-reaction mapping strategies, it emerged that the EC grouping
in the KEGG RPAIR network performed best. Thus, the KEGG RPAIR network (KEGG
RPAIR vs 49.0) was selected as input network for pathway prediction. It consists of 11,066
reactant pairs and 5,760 compounds, connected by 44,236 edges.

The MetaCyc network, which offers a more precise gene-to-reaction mapping (because
genes can be directly linked to reactions), could not be employed, because MetaCyc does not
contain many yeast genes.

4.5.2 Seed nodes

Two pathway predictions were performed for each nitrogen source: one for the up-regulated
genes and the second for the down-regulated genes.

The gene groups were filtered such that for each group only the 5 enzyme-coding genes
with the lowest E-value were retained. Previous experiments with unfiltered gene groups gave
complex results that were hard to interpret. The aim of the reduction of the input gene number
is to keep only the part of the pathway that is most affected by the nitrogen source in question.

For each of the reduced gene groups, reactant pairs were obtained in three steps using KEGG
data:

1. For each enzyme-coding gene, EC numbers were obtained by querying the KEGG
database on-the-fly.

2. Each EC number was associated to its reactions using the custom metabolic database
described in section 9.3.

3. Each reaction in turn was associated to its main reactant pairs using the custom
metabolic database.

4. The previous steps yield for each gene cluster a set of EC number groups, where each EC
number group consists of a set of main reactant pairs. EC number groups with mutually
exclusive reactant pairs (i.e. reactant pairs belonging to the same reaction) were merged
into one group, to prevent that the same reaction appears twice in the predicted pathway.

5. Finally, overlapping groups (i.e. groups containing the same reactant pair) were merged
as well.

4.5.3 Algorithm

Pathways were predicted with the hybrid of kWalks and Takahashi-Matsuyama, which was the
best-performing algorithm in the evaluation presented in chapter 3. The intermediate network
size extracted by kWalks in the first step of the hybrid was set to 5% of the input network
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size (i.e. the input network node number). KWalks was not iterated and its relevances not
used as weights. Preprocessing was enabled (see section 9.1 for details on these parameters).
Compounds adjacent to seed reactant pairs were included in the predictions.

After execution of the algorithm on the 40 gene clusters, 39 pathways could be predicted (for
thr_down, which is associated to only three main reactant pairs, pathway prediction failed).

4.6 Pathway predicted to be up-regulated in the
presence of aspartate

4.6.1 Up-regulated genes

In the presence of aspartate, 69 genes are up-regulated, 25 of them enzyme-coding. Table 4.5
displays the EC numbers and reactions associated to the five top enzyme-coding genes (i.e.
those with lowest E-values). One of the genes, ADH4, codes for a broad-specificity enzyme
that is associated to no less than 17 main reactant pairs. Seed reaction grouping allows to treat
cases like this one, where only a subset of the reactions associated to a gene is likely to be
relevant for the pathway.

Table 4.5: Gene-to-reactant pair mappings for the top five enzyme-coding genes up-regulated with
aspartate as sole nitrogen source

Gene Gene Gene EC numbers | Reactions and main
identifier name description of gene reactant pairs
of EC number
YCROI12W | PGKl1 3-phosphoglycerate kinase, 2723 R0O1512 [RPO0003, RP00113]

catalyzes transfer of

high-energy phosphoryl

groups from the acyl

phosphate of 1,3-bisphosphoglycerate
to ADP to produce ATP

YER062C HOR2 | One of two redundant 3.1.3.21 R00841 [RP00194]
DL-glycerol-3-phosphatases R07298 [RPO1251]
(RHR2/GPP1 encodes the
other) involved in glycerol

biosynthesis
YHR044C DOGI1 | 2-deoxyglucose-6-phosphate 3.1.3.68 R08548 [RP00680]
phosphatase, similar R02587 [RP02325]

to Dog2p, member of a
family of low molecular

weight phosphatases
YBRO67C TIP1 Major cell wall 3.1.1.- R0O7680 [RP11273]
mannoprotein with R0O7677 [RP11937]
possible lipase R06729 [RP09164, RP09420]
activity R05420 [RP05028]
YGL256W | ADH4 | Alcohol dehydrogenase 1.1.1.1 R05234 [RP11679]
isoenzyme type IV, dimeric R00623 [RP00139]
enzyme demonstrated to RO7327 []
be zinc-dependent despite R05233 [RP04835]
sequence similarity to R08558 [RP00236]
iron-activated alcohol R00624 [RP00542]
dehydrogenases R06917 [RP09622]

R07326 []

R08306 [RP13225]
R08310 [RP13235]
R06927 [RP09285]
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Table 4.5: Gene-to-reactant pair mappings for the top five enzyme-coding genes up-regulated with
aspartate as sole nitrogen source

Gene Gene Gene EC numbers | Reactions and main
identifier name description of gene reactant pairs
of EC number

R0O8557 [RP00236]
R0O1041 [RP00374]
R08281 [RP13149]
R04880 [RP04492]
R02124 [RP01983]
R00754 [RP00238]
R0O7105 [RP10191]
R04805 [RP04436]

4.6.2 Predicted pathway

The pathway predicted from the five enzyme-coding genes most significantly up-regulated in
the presence of aspartate as sole nitrogen source is shown in Figure 4.5. Overall, the pathway
is not well supported by S. cerevisiae enzymes. Especially the branch leading to L-Galactono-
1,4-lactone might be a false positive. A part of the pathway covers glycerol biosynthesis from
D-glycerate, which could indicate up-regulated lipid biosynthesis.

Because of the many reactions not supported by S. cerevisiae genes, the prediction was
repeated in a S. cerevisiae specific KEGG RPAIR network extracted from KEGG PATHWAY
version 46. The result is depicted in Figure 4.6. The pathway consists of three components.
Pathways extracted from KEGG RPAIR networks are sometimes disconnected due to mutual
exclusion between reactant pairs (see chapter 2). The branch ending in L-Galactono-1,4-
lactone present in the pathway predicted from the generic KEGG RPAIR network indeed
disappears as well as the connection between 3-Phospho-D-glycerate and glycerol.

In summary, in the presence of aspartate, glycerol biosynthesis is predicted to be up-
regulated. This might indicate that in the presence of the good nitrogen source aspartate,
storage compound synthesis is up-regulated.

4.7 Pathway predicted to be down-regulated in the
presence of aspartate

4.7.1 Down-regulated genes

In the presence of aspartate as sole nitrogen source, 12 out of 48 significantly down-regulated
genes could be associated to EC numbers and reactions. Several of the down-regulated genes
code for proteins of unknown function (e.g. YDR0O90C, YPL054W, YHRO029C, YIR030C),
which illustrates the fact that even for well studied organisms like S. cerevisiae, the proteome
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L-Galactono-1,4-lactone

Bluc\tiolct: Glycolysis / Gluconcogcgcsis ) (CO1115)
CadetBluc: Pentose and glucuronate interconversions
: Pentose phosphate pathway
: Ascorbate and aldarate metabolism
: Glycerolipid metabolism
: Fructose and mannose metabolism
: no match to any reference pathway
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Figure 4.5: The pathway predicted from the top five enzyme-coding genes up-regulated in the pres-
ence of aspartate as sole nitrogen source. Legend: Square=reactant pair (labeled with its KEGG iden-
tifier and associated EC numbers and genes), ellipse=compound (labeled with its KEGG identifier and
name).

sn-Glycerol 3-phosphate D-Glyceraldehyde 3-Phospho-D-glycerate Ecgonine methyl ester
(C00093) (C00577) (C00197) (C12443)

: Glycerolipid metabolism \ /
BlueViolet: Glycolysis / Gluconeogenesis .
Brown: Carbon fixation in photosynthetic organisms Glycerol Ecgomne
+ Alkaloid biosynthesis IT (C00116) (C10858)
blue: Seed nodes

Figure 4.6: The pathway predicted from the top five enzyme-coding genes up-regulated in the presence
of aspartate as sole nitrogen source in a S. cerevisiae specific RPAIR network. Legend: Square=reactant
pair (labeled with its KEGG identifier and associated EC numbers and genes), ellipse=compound (la-
beled with its KEGG identifier and name).
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is not completely elucidated. Table 4.6 lists the associated EC numbers and reactions of the
top five enzyme-coding genes.

Another annotation problem is apparent for gene YNL141W (AAH1): In KEGG, it is an-
notated with EC number 3.5.4.2 (gene definition field), but in fact is associated to EC number
3.5.4.4 according to both KEGG and SGD [74].

YCLO064C (CHA1) is known to accept both serine (EC number: 4.3.1.17) and threonine
(EC number: 4.3.1.19) as substrates and thus furnishes an example for a gene associated to
more than one EC number.

There are also two genes associated to the same EC number, namely YNL117W (MLSI)
and YIR031C (DAL7). Both code for a malate synthase and are thus an example for isoen-

zymes.

Table 4.6: Gene-to-reactant pair mappings for for the top five enzyme-coding genes down-regulated
with aspartate as sole nitrogen source

Gene Gene | Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
YIR029W | DAL2 | Allantoicase, converts 3534 R02422 [RP02197, RP02198]
allantoate to urea and
ureidoglycolate in the
second step of allantoin
degradation
YCL064C | CHA1 | Catabolic L-serine (L-threonine) 4.3.1.19 R00220 [RP04290]
deaminase, catalyzes R00996 [RP01226]
the degradation of both R06131 [RP0O0068]
L-serine and L-threonine 4.3.1.17 R00220 [RP04290]
R00590 [RP00998]
R06131 [RP00068]
YNL141W | AAH1 | Adenine deaminase (adenine 3544 R0O1560 [RP01594]
aminohydrolase), converts R06137 []
adenine to hypoxanthine R02556 [RP02305]
YNL117W | MLS1 | Malate synthase, enzyme 2.3.3.9 R00472 [RP00921, RP0O0007]
of the glyoxylate cycle,
involved in utilization
of non-fermentable carbon
sources
YIR031C DAL7 | Malate synthase, role 2.3.39 R00472 [RP00921, RP0O0007]
in allantoin degradation
unknown

4.7.2 Predicted pathway

The reactions associated to the 5 enzyme-coding genes are contained in 6 KEGG maps (see
Figure 4.7), which underlines the difficulty of interpreting a differentially expressed gene

106




group by pathway mapping alone.

Pathway Search Result

Sort by the pathway list

Show all objects
e sce01100 Metabolic pathways - Saccharomyces cerevisiae (budding yeast) (5)
e sce00630 Glyoxylate and dicarboxylate metabolism - Saccharomyces cerevisiae (budding yeast) (2)
e sce00230 Purine metabolism - Saccharomyces cerevisiae (budding yeast) (2)
e sce00620 Pyruvate metabolism - Saccharomyces cerevisiae (budding yeast) (2)
e sce00260 Glycine, serine and threonine metabolism - Saccharomyces cerevisiae (budding yeast) (1)
e sce00270 Cysteine and methionine metabolism - Saccharomyces cerevisiae (budding yeast) (1)

e sce00290 Valine, leucine and isoleucine biosynthesis - Saccharomyces cerevisiae (budding yeast) (1)

Figure 4.7: The list of pathways obtained from KEGG for the top five enzyme-coding genes down-
regulated in the presence of aspartate as sole nitrogen source. Metabolic pathways is a global map,
comprising all other KEGG maps.

The predicted pathway, shown in Figure 4.8, consists of three components: two of them are
orphan seed reactant pairs with their adjacent compounds (RP00998 and RP04290).

The prediction suggests a degradation pathway for purines, which converts deoxyadenosine
to deoxyinosine, hypoxanthine and xanthine, which is finally degraded to urate. This purine
degradation pathway corresponds well to the known purine degradation pathway I in MetaCyc
(identifier: PWY-5044). The purine degradation pathway is connected via 5-hydroxyisourate
to the allantoin degradation pathway (MetaCyc identifier: PWY-5697), which yields urea. In
addition, there are dubious connections to steps of the TCA cycle (fumarate, malate) and to a
reaction converting the generic compound 2-oxo acid into the generic compound alpha-amino
acid.

The prediction suggests that in the presence of the good nitrogen source aspartate, the degra-
dation of purines and allantoin is suppressed.

The nitrogen catabolite repression (NCR) is known to suppress a number of nitrogen degra-
dation pathways in the presence of good nitrogen sources in S. cerevisiae and other fungi (e.g.

[170]). One may hypothesize that the aforementioned degradation pathways are also under
control of the NCR.
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Figure 4.8: The pathway predicted from the top five enzyme-coding genes down-regulated in the
presence of aspartate as sole nitrogen source. Legend: Square=reactant pair (labeled with its KEGG
identifier and associated EC numbers and genes), ellipse=compound (labeled with its KEGG identifier
and name).
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4.8 Pathway predicted to be up-regulated in the

presence of phenylalanine

4.8.1 Up-regulated genes

From the 103 genes up-regulated in the presence of phenylalanine, 29 are enzyme-coding.
Table 4.7 lists the five most significantly up-regulated enzyme-coding genes with their EC
numbers and reactions. ARO10 exemplifies well the difference in gene-reaction mapping
between KEGG and MetaCyc: Whereas AROI10 is associated to no less than 19 reactions in
KEGG (via its EC number), it is directly linked to only 4 reactions in MetaCyc.

Table 4.7: Gene-to-reactant pair mappings for genes up-regulated with phenylalanine as sole nitrogen

source

Gene Gene Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
Q0045 COX1 | Subunit I of cytochrome 1.9.3.1 RO0O0081 [RP00038]
¢ oxidase, which is the
terminal member of the
mitochondrial inner membrane
electron transport chain
YKL165C MCD4 | Protein involved in 2.7.-.- R07678 [RP11388]
glycosylphosphatidylinositol
(GPI) anchor synthesis
YDR380W | AROI10 | Phenylpyruvate decarboxylase, 4.1.1.- R0O2518 []
catalyzes decarboxylation R06925 [RP09207]
of phenylpyruvate to R00219 [RP04275]
phenylacetaldehyde, which R04008 [RP03629]
is the first specific R05376 [RP04982]
step in the Ehrlich pathway R04986 [RP04595]
R03341 [RP02956]
R04885 [RP04496]
R03674 [RP03301]
R05087 [RP04692]
R03367 [RP02986]
R05377 [RP04983]
R04223 [RP03854]
R02669 [RP02396]
R06973 [RP10307]
R04732 [RP04373]
R04515 [RP04156]
R02952 [RP02631]
R04172 [RP03805]
YGRO88W | CTT1 | Cytosolic catalase T, 1.11.1.6 R02670 [RP02397, RP12780]
has a role in protection R00602 [RP00094]
from oxidative damage R00009 [RP02902]
by hydrogen peroxide
YHR137W | ARO9 | Aromatic aminotransferase 2.6.1.57 R07396 [RP00014, RP00558]
11, catalyzes the first R0O1731 [RP01721, RP0O0059]
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Table 4.7: Gene-to-reactant pair mappings for genes up-regulated with phenylalanine as sole nitrogen
source

Gene Gene | Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
step of tryptophan, phenylalanine, R00734 [RP00621, RP00014]
and tyrosine catabolism R00694 [RP00014, RP0O0057]
R03120 [RP00550, RP00014]

4.8.2 Predicted pathway

The predicted pathway (see Figure 4.9) consists of three components. One of them is an
orphan reactant pair with its adjacent compounds (RPO0038). The second component contains
compounds and reactant pairs associated to tryptophan metabolism. The third component
finally postulates a connection between galactose and tyrosine metabolism. This connection is
very likely a false positive, as there is a lack of intermediate seeds. The tyrosine-metabolism-
mapping part of the prediction contains the first steps of the tyrosine degradation pathway.
Interestingly, the EC numbers of these steps (2.6.1.5 and 4.1.1.-/4.1.1.80) are the same as
the EC numbers of the first steps of phenylalanine degradation as annotated in KEGG (with
phenylpyruvate and phenylacetaldehyde as intermediates).

The pathway is not well supported by yeast-specific enzymes, except for its parts mapping
tryptophan and tyrosine metabolism, respectively. One might assume that both are involved
in the degradation of phenylalanine, which explains their up-regulation in the presence of this
nitrogen source.

In the yeast-specific network, the selected genes could not be connected, because most of
their associated reactant pairs were not present in this network. This discrepancy may be either
due to an incomplete yeast-specific network and/or to imprecise gene-reaction mappings.

4.9 Pathway predicted to be down-regulated in the
presence of phenylalanine

4.9.1 Down-regulated genes

In the presence of phenylalanine as sole nitrogen source, 24 genes are down-regulated, among
them four enzymes. Table 4.8 lists the EC numbers, reactions and main reactant pairs obtained
for each enzyme.
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Figure 4.9: The pathway predicted from the top five enzyme-coding genes up-regulated in the pres-
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and name).
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Table 4.8: Gene-to-reactant pair mappings for genes down-regulated with phenylalanine as sole nitro-

gen source
Gene Gene | Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number

YIR029W | DAL?2 | Allantoicase, converts 3534 R02422 [RP02197, RP02198]
allantoate to urea and
ureidoglycolate in the
second step of allantoin
degradation

YNL141W | AAHI1 | Adenine deaminase (adenine 3544 R0O1560 [RP01594]
aminohydrolase), converts R06137[]
adenine to hypoxanthine R02556 [RP02305]

YIR031C DAL7 | Malate synthase, role 2.3.3.9 R00472 [RP00921, RP00007]
in allantoin degradation
unknown

YGL202W | AROS | Aromatic aminotransferase 2.6.1.57 R07396 [RP00014, RP00558]
I, expression is regulated RO1731 [RP0O1721, RP0O0059]
by general control of R00734 [RP00621, RP00014]
amino acid biosynthesis R00694 [RP00014, RP0O0057]

R03120 [RP00550, RP00014]

4.9.2 Predicted pathway

The predicted pathway (see Figure 4.10) contains a purine degradation pathway that was also
predicted for the genes down-regulated in the presence of aspartate. The purine degradation
pathway ends in urate, which is predicted to be degraded to ureidoglycolate via the allantoin
degradation pathway (MetaCyc identifier PWY-5697). Finally, ureidoglycolate is linked via
glyoxylate, malate and oxaloacetate to aspartate.

As in the case of aspartate, one may assume that the purine degradation pathway, which is
active in the presence of the bad nitrogen source urea, is not needed in the presence of the
intermediate nitrogen source phenylalanine.

4.10 Pathway predicted to be up-regulated in the
presence of leucine

4.10.1 Up-regulated genes

The top five genes up-regulated in the presence of leucine are mostly associated to incomplete
EC numbers. Incomplete EC numbers indicate that the knowledge of the reaction mechanism
is not yet elucidated. These EC numbers are problematic, because they cannot be precisely
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Figure 4.10: The pathway predicted from four enzyme-coding genes down-regulated in the presence
of phenylalanine as sole nitrogen source. Legend: Square=reactant pair (labeled with its KEGG iden-
tifier and associated EC numbers and genes), ellipse=compound (labeled with its KEGG identifier and
name).

mapped to reactions. KEGG nevertheless associates reactions to incomplete EC numbers.
These associations will be used here, except for EC numbers where only the first level is
known (e.g. 4.-.-.-). Table 4.9 lists the genes with their EC numbers and associated reactions.
A special case is YIR0O19C (MUCT1), which is associated to a complete EC number (3.2.1.3),
but not to any main reactant pair. The reason is that the reactions associated to this EC number
are polymeric (e.g. RO1791 equation is: Dextrin + H,O «+ alpha-D-Glucose + Dextrin) and
the metabolic networks constructed during this work do not include polymeric reactions.

Table 4.9: Gene-to-reactant pair mappings for the top five enzyme-coding genes up-regulated with
leucine as sole nitrogen source

Gene Gene Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
YMRO095C SNO1 | Protein of unconfirmed 2.6.-.- R07386 [RP10955, RP11005]

function, involved in
pyridoxine metabolism

YDR380W | AROI0 | Phenylpyruvate decarboxylase, 4.1.1.- R0O2518 []
catalyzes decarboxylation R06925 [RP09207]
of phenylpyruvate to R00219 [RP04275]
phenylacetaldehyde, which R04008 [RP03629]
is the first specific R05376 [RP04982]
step in the Ehrlich pathway R04986 [RP04595]

R03341 [RP02956]
R04885 [RP04496]
R03674 [RP03301]
R05087 [RP04692]
R03367 [RP02986]
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Table 4.9: Gene-to-reactant pair mappings for the top five enzyme-coding genes up-regulated with
leucine as sole nitrogen source

Gene Gene Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number

R05377 [RP04983]
R04223 [RP03854]
R02669 [RP02396]
R06973 [RP10307]
R04732 [RP04373]
R04515 [RP04156]
R02952 [RP02631]
R04172 [RP03805]

YMRO96W | SNZ1 Protein involved in vitamin 4.-.-.- -
B6 biosynthesis
YIR019C MUC1 | GPI-anchored cell surface 3.2.1.3 -

glycoprotein (flocculin)
required for pseudohyphal
formation, invasive growth,
flocculation, and biofilms

YHR137W | ARO9 | Aromatic aminotransferase 2.6.1.57 R07396 [RP00014, RP00558]
I1, catalyzes the first R0O1731 [RP01721, RP0O0059]
step of tryptophan, phenylalanine, R00734 [RP00621, RP00014]
and tyrosine catabolism R00694 [RP00014, RPO0057]

R03120 [RP00550, RP00014]

4.10.2 Predicted pathway

The pathway predicted for four genes most significantly up-regulated in the presence of
leucine as sole nitrogen source is shown in Figure 4.11. It consists of one component, a part
of which maps to tyrosine metabolism and contains the first steps of the tyrosine degradation
pathway. 4-Hydroxyphenylacetate is connected to choline via Penicillin G, which very likely
represents a false positive.

The predicted pathway suggests an up-regulation of tyrosine degradation in the presence of
leucine as sole nitrogen source.

Unfortunately, the prediction could not be repeated in the yeast-specific network, because it
did not contain enough seed reactant pairs.
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Figure 4.11: The pathway predicted from the top five enzyme-coding genes up-regulated in the pres-
ence of leucine as sole nitrogen source. Legend: Square=reactant pair (labeled with its KEGG identi-
fier and associated EC numbers and genes), ellipse=compound (labeled with its KEGG identifier and
name).

4.11 Pathway predicted to be down-regulated in the
presence of leucine

4.11.1 Down-regulated genes

26 out of 5,690 S. cerevisiae genes were identified to be significantly down-regulated in the
presence of leucine, nine of them enzyme-coding. Table 4.10 lists the top five enzyme-coding
genes together with their EC numbers and reactions. As for aspartate as sole nitrogen source,
two malate synthases are down-regulated.

Table 4.10: Gene-to-reactant pair mappings for the top five enzyme-coding genes down-regulated with
leucine as sole nitrogen source

Gene Gene | Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
YIR029W | DAL2 | Allantoicase, converts 3534 R02422 [RP02197, RP02198]
allantoate to urea and
ureidoglycolate in the
second step of allantoin
degradation
YNL141W | AAH1 | Adenine deaminase (adenine 3544 R01560 [RP01594]
aminohydrolase), converts R06137 []
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Table 4.10: Gene-to-reactant pair mappings for the top five enzyme-coding genes down-regulated with
leucine as sole nitrogen source

Gene Gene | Gene EC numbers | Reactions and main
identifier name | description of gene reactant pairs
of EC number
adenine to hypoxanthine R02556 [RP02305]
YNLI117W | MLS1 | Malate synthase, enzyme 2.3.39 R00472 [RP00921, RP0O0007]
of the glyoxylate cycle,

involved in utilization

of non-fermentable carbon
sources

YLR142W | PUT1 | Proline oxidase, nuclear-encoded 1.5.99.8 R01253 [RP00228]
mitochondrial protein R05051 [RP04655]
involved in utilization

of proline as sole nitrogen
source

YIR031C DAL7 | Malate synthase, role 2.3.39 R00472 [RP00921, RP0O0007]
in allantoin degradation
unknown

4.11.2 Predicted pathway

The prediction (see Figure 4.12) suggests that a proline degradation pathway (that proceeds
via L-erythro-4-hydroxyglutamate and ends in the glyoxylate cycle) is down-regulated in the
presence of leucine. The pathway also contains the purine and allantoin degradation pathways
predicted to be down-regulated in the presence of aspartate.

Leucine clustered with slow-growth nitrogen sources, but is stated to support quicker growth
than the other group B nitrogen sources [63]. One may hypothesize that the purine and proline
degradation pathways, which might generate extra nitrogen in a nitrogen-starved cell, are not
needed in the presence of leucine. Interestingly, the down-regulation of a proline degradation
pathway was not predicted for any other group B nitrogen source, whereas the down-regulation
of the purine degradation pathway is predicted for isoleucine and methionine as well (for
threonine, no results were obtained).

4.12 Comparison of nitrogen sources based on
predicted pathways

So far, the results for three nitrogen sources (a good, a bad and an intermediate one) were
presented. When inspecting the predictions for the other nitrogen sources, it becomes apparent
that the same pathways, such as proline, allantoin and purine degradation, occur in several
conditions.

Thus, nitrogen sources could be grouped based on the similarity of the metabolic pathways
they activate or suppress.
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Figure 4.12: The pathway predicted from the top five enzyme-coding genes down-regulated in the
presence of leucine as sole nitrogen source. Legend: Square=reactant pair (labeled with its KEGG
identifier and associated EC numbers and genes), ellipse=compound (labeled with its KEGG identifier
and name).

More precisely, the distance between two nitrogen sources i and j can be defined as
dist; j = 1 —Jaccard(i, j) 4.1)

Given node set A from the pathway predicted for nitrogen source i and node set B from the
pathway predicted for nitrogen source j, the Jaccard coefficient is defined as:

ANB
Jaccard = 108 4.2)

Orphan reactant pairs (and their adjacent compounds) are not taken into account, to avoid a
bias due to many shared nodes for a broad-specificity enzyme.

Once the distance between two nitrogen sources is defined, the nitrogen sources can be clus-
tered as shown in Figure 4.13. Clusters were obtained using function "heatmap" with method
"ward" in R, other cluster algorithms yield similar results. For comparison, the clustering of
nitrogen sources based on gene expression ratios is shown in Figure 4.1.

When analyzing the pathway-based clustering, the following can be noted:

e In general, pathways are very dissimilar.
e Pathways are roughly divided into up- and down-regulated.

e Notable clusters (with distances below 0.6) are formed by: (1) pathways up-regulated in
the presence of aspartate, glutamate and proline, (2) pathways up-regulated in the pres-
ence of alanine and ammonium, (3) pathways up-regulated in the presence of glutamine
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and valine, (4) pathways down-regulated in the presence of aspartate, serine, isoleucine,
arginine, leucine and phenylalanine, (5) pathways down-regulated in the presence of
ammonium and asparagine and (6) pathways down-regulated in the presence of trypto-
phan and tyrosine.

e The clustering is different to the one obtained from the gene expression ratio matrix.
This may be due to the separation into up- and down-regulated pathways and the ne-
glect of non-enzyme-coding genes. Notably, good and bad nitrogen sources were not
separated as clearly as in Figure 4.1.

e Nitrogen sources with intersecting up-regulated pathways do not necessarily have inter-
secting down-regulated pathways.

4.13 Discussion and conclusion

The evaluation of two seed reaction grouping strategies showed that EC groups perform
slightly better than reaction groups. Grouping seed reactions on the gene level was not tested,
but might be useful to predict pathways from genes that can be directly linked to reactions.

Interestingly, some good and bad nitrogen sources cluster together, mainly because of the
allantoin and purine degradation pathways down-regulated in their presence (e.g. for aspartate,
phenylalanine and leucine). The pathways are down-regulated with respect to urea as sole
nitrogen source and may therefore be specific to this reference nitrogen source rather than the
tested nitrogen sources.

The up-regulated pathways are more variable and may be specific to the investigated nitro-
gen sources. In a few cases, a part of the up-regulated pathway corresponds to a reference
pathway degrading the given nitrogen source (phenylalanine, GABA). In other cases (aspar-
tate, asparagine, ammonium) storage compound formation is up-regulated.

During prediction of pathways from up- and down-regulated gene groups, several difficul-
ties were encountered: First, it is not obvious how many of the differentially expressed genes
in each group should serve as input to pathway prediction. A conservative threshold (E value
set to one) resulted in quite large gene groups and pathways predicted for them were hard to
visualize and to interpret. One could either divide those pathways in smaller units using a
graph cluster algorithm or, as done in this chapter, keep only the genes with lowest E values.
In the latter case, a threshold is required, which was set arbitrarily to five. Second, gene-to-
reaction mapping is ambiguous in KEGG. Genes are not directly linked to reactions (apart
from the links hidden in the KGML files that are not accessible via the KEGG API or web
interface), thus genes have to be linked to reactions via EC numbers, which introduces false
positive reactions. EC numbers are sometimes incomplete (e.g. YMRO095C with EC number
2.6.-.-), or describe broad-specificity enzymes associated to a large number of reactions (e.g.
YGL256W alias ADH4). Third, there is a tradeoff in network choice. On the one hand, a
species-specific metabolic network cannot discover varieties of pathways yet unknown in this
species. On the other hand, a network that is too generic introduces many false positives.
Fourth, KEGG contains generic compounds such as alpha-amino acid, whose treatment is not
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Figure 4.13: Heat map of nitrogen source distances. The columns of the matrix are re-arranged
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pathways) and one (intersection of pathways is zero).
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obvious. They are useful to describe broad-specificity reactions, but may introduce dubious
connections.

Thus, errors are introduced on several levels: during the identification of significantly over-
expressed genes, during the mapping of genes to reactions and finally during pathway predic-
tion. To reduce errors in future applications of pathway prediction, one may consider other
databases than KEGG to map genes to reactions. For instance, MetaCyc offers more precise
gene-to-reaction mappings and in addition cross-references its reactions to KEGG. Several
taxonomic levels could be tested to construct a metabolic network with sufficient sensitivity
(new pathways can be detected) and specificity (most reactions are supported by species-
specific enzymes). In general, species-specific KEGG metabolic networks are of low quality.
One might therefore consider the high-quality metabolic reconstruction of yeast metabolism
recently described in [141].

Overall, this chapter highlights the many problems encountered when interpreting microar-
ray data on the pathway level and the presented results should be considered as preliminary.
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5 Stoichiometric versus
non-stoichiometric pathway
prediction

Presented letter to the editor:

K. Faust, D. Croes and J. van Helden

In response to ''Can sugars be produced from fatty acids? A test case for pathway anal-
ysis tools"

Bioinformatics, vol. 25, pp. 3202-3205, 2009.

5.1 Introduction

The question can be raised whether the stoichiometry of compounds should be taken into
account during pathway prediction. This chapter deals with this question.

First, taking into account the stoichiometry of pathways means to stoichiometrically balance
the metabolic pathway. Merely labeling the reactions of a pathway with their stoichiometries
can easily be done by querying a metabolic database and is not a point of discussion.

In a stoichiometrically balanced pathway, as many compounds are produced as consumed
and reactions can only occur if their substrates are present in sufficient numbers.

The prediction approaches presented in chapter 2 and 3 do not stoichiometrically balance
the predicted pathway. However, several prediction approaches presented in the Introduction
(such as elementary mode analysis and the constraint-based approaches by Planes & Beasley,
see section 1.10.3) are designed to predict balanced pathways only. Figure 5.1 shows the bal-
anced and non-balanced part of a reference pathway. In the reference pathways listed in Meta-
Cyc and aMAZE, side compounds are usually not balanced. A pathway prediction approach
that predicts balanced pathways is thus not capable to predict these reference pathways, except
if it excludes certain compounds from the balancing condition (called external compounds in
EM analysis). Thus, side compounds need to be defined before pathway prediction, which
poses the difficulties mentioned in the Introduction: (1) It is not clear beforehand which com-
pounds are side compounds (2) Pathways synthesizing or degrading the side compounds are
excluded together with the side compounds.

On the other hand, if stoichiometry is neglected in pathway prediction, biochemically ir-
relevant pathways may result. A study case illustrating this was recently presented by de
Figueiredo et al. [38] and concerns the synthesis of sugars from fatty acids. Fatty acids
are essentially broken down to acetyl-CoA molecules. Several organisms (e.g. E. coli and
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Figure 5.1: The serine biosynthesis pathway as annotated in MetaCyc (identifier: SERSYN-PWY) is
shown. Each reaction is displayed with all its substrates and products. Each arc connecting a compound
and a reaction is labeled with the stoichiometric coefficient, i.e. the number of units of the compound
consumed or produced by the reaction. In this pathway, only the white compounds are balanced, that
is they are produced and consumed in equal numbers. The blue compounds (start and end compound
of the pathway) as well as the grey compounds (side compounds) are not balanced. An approach that
stoichiometrically balances pathways can predict the serine biosynthesis pathway only if it excludes
certain compounds from the balancing condition. In EM analysis, such non-balanced compounds are
called external compounds.
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plants) can synthesize sugars (such as glucose) from acetyl-CoA. In the TCA cycle, acetyl-
CoA is converted into oxaloacetate, which can enter the glucose-yielding gluconeogenesis
pathway. However, in the TCA cycle, acetyl-CoA is entirely degraded to CO,. Without sto-
ichiometrically balancing the pathway, a prediction method could falsely predict that sugars
are synthesized from fatty acids via the TCA cycle. Figure 5.2 illustrates this study case.

gluconeogenesis

\ (containing two carbon atoms)

fatty acid degradation
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Y .
- a]?t — A't .
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Figure 5.2: Illustration of the study case presented by de Figueiredo et al. [38]. Acetyl-CoA is con-
verted into oxaloacetate via the TCA cycle. Oxaloacetate in turn can enter the gluconeogenesis path-
way, which yields glucose. However, the TCA cycle degrades acetyl-CoA entirely to carbon dioxide.
It is therefore not possible to synthesize glucose from acetyl-CoA via this cycle. Since path finding
does not balance the pathway, it could nevertheless predict a pathway that falsely converts the start
compound acetyl-CoA into the end compound glucose via this cycle. A bypass such as the glyoxylate
cycle is needed to enable the net synthesis of glucose from acetyl-CoA. Image sources: The pathway
image was taken from MetaCyc. Text and arrows in black as well as blue ellipses were added by the
author.
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5.2 Treatment of the fatty-acid-to-sugar study case
without stoichiometric balance

It is worthwhile exploring whether the fatty-acid-to-sugar study case and similar cases can be
treated correctly without stoichiometrically balancing the predicted pathway.

5.2.1 Atom tracing

First, one may ask whether the study case can be treated correctly by atom tracing. In order
to check whether a net production via the TCA cycle is possible, atom tracing methods have
to trace not only the fatty acid atoms to the desired target compound (the sugar), but also
through the TCA cycle. Thus, the atom tracing method needs to follow all the atoms of an
input compound through the network and in addition to keep track of cycling atoms (such as
those in the TCA cycle) by counting atoms. This amounts to stoichiometrically balancing the
compounds of a pathway.

5.2.2 Cycle treatment

If one assumes that all problematic cases are caused by a special kind of metabolic cycle,
one can attempt to identify all such cycles in the metabolic network. If all cycles without net
production of compounds could be identified prior to pathway prediction, path finding could
be forbidden to reach a target compound via such a cycle. Whether simple assumptions like
this one are sufficient to remedy path finding is an open question.

5.3 Assumptions of stoichiometrically balanced and
unbalanced pathways

From what has been said so far, we may conclude that pathway prediction methods should
always stoichiometrically balance a predicted pathway. There is however another turn to the
story.

When stoichiometrically balancing a pathway, it is assumed that the metabolic network is
completely known, otherwise compounds cannot be balanced correctly (as unknown reactions
may consume or produce them). For stoichiometrically unbalanced pathways, this assumption
is not made, but it is assumed that compounds are always available in sufficient numbers for
the pathway to proceed.

Concerning the study case, non-stoichiometric pathway prediction assumes that another part
of the network will generate oxaloacetate from the source compound by other routes than the
TCA cycle (which may or may not be the case), whereas stoichiometric pathway prediction
assumes that the network (where oxaloacetate is generated from the source compound only
via the TCA cycle) is complete (which may or may not be the case).

Thus, stoichiometric pathway prediction is the method of choice in case a well curated,
complete metabolic network is available. For incomplete metabolic networks, pathway pre-
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diction with stoichiometry is not superior to pathway prediction without stoichiometry, as both
make (possibly unjustified) assumptions in this case.

5.4 Stoichiometry and incomplete metabolic
networks

The less is known about the metabolism of an organism, the less accurate will be predic-
tions from both stoichiometric and non-stoichiometric approaches. However, stoichiometric
approaches are more strongly affected by incomplete networks.

In contrast to non-stoichiometric approaches, stoichiometric approaches may predict the
absence of a number of pathways, because balancing reactions for certain compounds are
absent from the network. These pathways will be false negatives in case balancing reactions
are present in the organism, but have been missed during construction of the network.

For instance, consider the fatty-acid-to-sugar study case and assume that the organism in
question possesses the glyoxylate cycle. In this case, a stoichiometric approach, based on the
incomplete metabolic network, would wrongly predict that fatty acids cannot be converted
into sugars, whereas a non-stoichiometric approach (which assumes that oxaloacetate is re-
plenished by some other part of metabolism) would probably predict a pathway close to the
true pathway (where the true pathway is determined by experimentally tracing carbon atoms
from fatty acids to sugar).

5.5 EM analysis versus path finding

There are different ways of stoichiometrically balancing a pathway, one of which is EM anal-
ysis (see Introduction, section 1.10.3).

In the same article that presented the fatty-acid-to-sugar study case, de Figueiredo and co-
authors also compared EM analysis with path finding (for path finding, see section 1.10.3).
This comparison had several weaknesses, which prompted us to respond in a comment. In this
comment, we not only point out the weaknesses of the comparison of EM analysis and path
finding, we also discuss strengths and weaknesses of both approaches.

Some of the weaknesses of EM analysis listed in our comment have meanwhile been ad-
dressed. This concerns the following weaknesses:

e EM analysis can only be applied to small networks: Recently, methods have been
published which allow the application of EM analysis to genome-scale networks
[157, 85, 37].

e In large networks, EM analysis enumerates millions of EMs: A strategy to restrict the
number of EMs has been published recently, which consist in ranking EMs according
to their length [37].

Apart from the weaknesses of EM analysis mentioned in the comment, there are additional
weaknesses listed below:
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e EM analysis cannot deal with parallel pathways or isoenzymes, which have to be re-
moved from the metabolic network.

e EM analysis assumes that the compound concentrations remain approximately constant
at an appropriate time scale. This is motivated by stating that compound pools rapidly
reach a steady state (within seconds). However, recent measurements in S. cerevisiae
have shown that there are slow compound pools [118]. Thus, the steady state assumption
is not valid for all compounds to the same extend. Slow compounds could be considered
as external compounds, but without measurements, it is not clear which are the slow
compounds.

5.6 Alternative stoichiometric approaches

The stoichiometric pathway prediction approach by Planes and Beasley [133] (see Introduc-
tion, section 1.10.3) does not suffer from many of the drawbacks of EM analysis (e.g. steady
state assumption, assignment of external compounds, millions of EMs) and copes with large
networks. In contrast to many path finding approaches, it also deals well with cycles. More-
over, this approach has been systematically evaluated on reference pathways from E. coli.
Thus, for the prediction of stoichiometrically balanced pathways given two seed nodes, this
approach may be more appropriate than EM analysis.

5.7 Stoichiometric balance and feasibility of
metabolic pathways

One may ask whether metabolic pathways should not only be balanced, but also be feasible.
In other words, should a pathway produce and consume all its compounds in equal numbers
and generate all its compounds from the given seed nodes? The difference becomes clear
when we consider the pair NADPH/NADP. In a balanced pathway, as many units of NADPH
and NADP are produced as consumed. In a feasible pathway, NADPH and NADP have to
be synthesized by the pathway (or to be excluded from the feasibility condition). Chemical
organizations (see Introduction, section 1.7.6) are an example for systems that generate all
their compounds via stoichiometrically balanced pathways. Whether or not pathways should
be balanced and feasible largely depends on the application in mind. One such application
may be the construction of in vitro pathways that synthesize a desired compound [73].

5.8 Conclusion

From the comparison of stoichiometric versus non-stoichiometric prediction approaches, one
can conclude that each is appropriate in a different situation. Non-stoichiometric approaches
should be applied when predicting pathways from a large, possibly incomplete network, which
may or may not be organism-specific. In contrast, stoichiometric approaches should be applied
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when predicting pathways from a well-curated, organism-specific network. Of course, one of
the goals of pathway prediction, namely the discovery of new pathways, is less interesting in
a well-known network.
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ABSTRACT

Motivation: In their article entitled “Can sugars be produced from
fatty acids? A test case for pathway analysis tools” de Figueiredo
and co-authors assess the performance of three pathway prediction
tools (METATOOL, PathFinding and Pathway Hunter Tool) using the
synthesis of glucose-6-phosphate (G6P) from acetyl-CoA in humans
as a test case (de Figueiredo, et al., 2008). We think that this article
is biased for three reasons: (1) The metabolic networks used as
input for the respective tools were of very different sizes; (2) the
“assessment” is restricted to two study cases; (3) developers are
inherently more skilled to use their own tools than those developed
by other people.

We extended the analyses led by de Figueiredo and clearly show
that the apparent superior performance of their tool (METATOOL) is
partly due to the differences in input network sizes. We also see a
conceptual problem in the comparison of tools that serve different
purposes. In our opinion, metabolic path finding and elementary
mode analysis are answering different biological questions, and
should be considered as complementary rather than competitive
approaches.

1 INTRODUCTION

The CO,-releasing reactions of the Krebs cycle need to be bypassed in
order to synthesize G6P (a sugar) from acetyl-CoA via this cycle. Such a
bypass is the glyoxylate cycle, which is active in many organisms capable
of growing on fatty acids (such as certain plants and bacteria), but absent in
humans (Berg, et al., 2002). Based on this study case, de Figueiredo and
colleagues compare the following tools:

(1) METATOOL 5.0 (von Kamp and Schuster, 2006), which computes
the elementary modes (EM) of a metabolic network. An elementary mode
is defined as the “minimal set of enzymes that could operate at steady
state” (Pfeiffer, et al., 1999). The steady state condition requires the
stoichiometric balance (production and consumption in equal numbers) of
all compounds that are not external to the metabolic network.

(2) PathFinding (Croes, et al., 2005; Croes, et al., 2006) is based on a k-
shortest paths algorithm (depth-first search). It circumvents the problem of
highly connected compounds (van Helden, et al., 2002) by assigning
weights to compounds according to their degree in the metabolic network.

(3) Pathway Hunter Tool (PHT) (Rahman, et al., 2004) is also based on a
k-shortest paths algorithm (depth-first search). It relies on the chemical
similarity of substrate-product pairs to avoid side compounds.

“To whom correspondence should be addressed.

We will refer to pathway prediction tools relying mainly on network
topology and ignoring stoichiometry (such as PathFinding and PHT) as
path finding tools.

In this letter, we do not contest the main conclusion of the authors that
only METATOOL deals correctly with the selected test case. Indeed, this
test case illustrates well some problems that can arise when the
stoichiometry is ignored in pathway prediction. However, we question the
evaluation procedure, and therefore the generality of their conclusion. We
also give a different view on the respective strengths and weaknesses of
EM-based versus path finding approaches.

2 BIASES IN THE EVALUATION PROCEDURE

2.1  Tools should be fed with the same input network

Instead of supplying all three tools with the same metabolic network, each
of them was tested with a different input metabolic network. METATOOL
was fed with a network consisting of 29 carefully selected reactions
involved in central metabolism. PHT was launched on a human-specific
network obtained from KEGG (Kanehisa, et al., 2008) (v.39.0) containing
1,492 reactions and 1,490 compounds. PathFinding was tested with the
complete KEGG small molecule metabolic network, which comprised
5,985 reactions and 5,082 compounds (Croes, et al., 2005), and its results
were a posteriori filtered to keep only paths present in the human-specific
KEGG network. Considering this difference in input network size, it is not
surprising that METATOOL comes closest to the expected result.

To demonstrate that network size does matter in such a comparison, we
ran PathFinding on the same input network as given to METATOOL. For
this, we constructed two bipartite networks from the 29 reactions
(including the glyoxylate cycle) used by de Figueiredo, one taking into
account reaction directionality and another one treating all reactions as
reversible. Compounds were assigned a weight equal to their degree in the
complete small molecule metabolic network (KEGG LIGAND version
44.0), as done in (Croes, et al., 2006). Given these small networks,
PathFinding returned the glyoxylate cycle and gluconeogenesis pathway as
top-ranking paths (supplementary material), which is not the case if it is run
on the full KEGG network as done by de Figueiredo.

2.2 Tools should be assessed on a representative
number of study cases

The comparison presented by de Figueiredo et al. is also questionable
because of its restriction to two carefully selected study cases. This results
in a biased view on the quality of the compared tools. Path finding tools are
particularly weak in discovering paths situated in the highly connected core
of large metabolic networks (e.g. glycolysis, TCA cycle, etc.). In contrast,
these pathways have been studied with EM analysis before, e.g. (Carlson,
et al., 2004; Schwartz and Kanehisa, 2006), which shows that the study
case was not selected at random. A fair comparison should be based either

© The Author (2009). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions @ oxfordjournals.org 1
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on the analysis of all available pathways, or on a representative and
unbiased selection of them.

2.3 Tool comparisons should be carried out by neutral
assessors

Lastly, we would like to point out that the comparison of the three
pathway prediction tools has been carried out by authors involved in the
development of one of these tools (namely METATOOL). This induces an
inherent bias in the comparison, as a developer is more skilled in the use of
his/her own tools than in those developed by other people. A fairer
procedure would be to follow a CASP-like protocol (Moult, et al., 2007),
where developers would use their own tools on a set of test cases, and the
evaluation of the results would be carried out by an independent committee.
However, in our opinion it is not meaningful to compare pathway
prediction performance of EM analysis and path finding approaches, since
they differ in their definition of a metabolic pathway and have been
designed for different tasks.

3 DISCUSSION

The main difference between EM analysis and path finding approaches lies
in their definition of a metabolic pathway. Whereas EM analysis considers
as valid pathways only those metabolic sub-networks where all internal
compounds are stoichiometrically balanced, path finding approaches do not
impose any stoichiometric constraints. In our opinion, this fundamental
distinction in the definition of a metabolic pathway leads to different
advantages and disadvantages of both types of tools for pathway prediction,
which are summarized below.

Advantages of EM-based tools: (1) They predict pathways whose
internal compounds are balanced; (2) consequently, they also predict the
pathway stoichiometry; (3) they can treat cyclic pathways.

Disadvantages of EM-based tools: (1) They require the user to decide for
each compound of a given metabolic network whether it is internal or
external to the system. In case the assignment of a compound as internal is
faulty, EM analysis might fail to detect biochemically valid pathways; (2)
EM-based tools cannot predict pathways that do not fit into their definition
of a pathway. Planes and Beasley (Planes and Beasley, 2008) listed a
number of classical pathways that are missed by EM-based tools for this
reason (among them arginine biosynthesis and pentose phosphate salvage
pathway); (3) combinatorial explosion limits the size of the input network
that EM-based tools can treat. For instance, METATOOL 5.0 computed
2,450,787 EMs for a metabolic network of E. coli consisting of 112
reactions and 89 internal compounds within 87 minutes (von Kamp and
Schuster, 2006); (4) predicted EMs are not ranked, which makes it hard to
inspect EM analysis results for large metabolic networks (e.g. networks
with more than 100 nodes). However, they may be ranked according to
molar yield of a compound of interest (Trinh, et al., 2009) or on the basis of
experimentally measured fluxes (Schwartz and Kanehisa, 2006); (5) the
steady state constraint might not be appropriate for the metabolic network
under study. Indeed, an organism may live in a rapidly changing
environment, where the utilization of some substrates will modify their
external concentration, which will be compensated by the activation or
repression of other pathways. The steady-state constraint on the models
seems essentially valid when experiments are performed in perfectly
controlled conditions such as a chemostat, so that the system is really in
steady state. In such conditions, it is crucial to carefully choose the set of
reactions included in the network in order to ensure that the derived
mathematical model can reach a steady state. For example, Teusink et al.
modified their model of glycolysis because numerical simulations
performed with experimentally measured metabolite concentrations had
shown that this model failed to reach a steady state (Teusink, et al., 2000).

Path finding tools have the following advantages: (1) They can deal with
large input networks (e.g. all currently known compounds and reactions);
(2) they do not require the partition of compounds into internal and external
(though some path finding tools need additional knowledge such as the

compound structure); (3) they allow the integration of contextual
information. For instance, weights can express the probability of a reaction
to occur in the organism under study; (4) they rank predicted paths
according to a certain criterion such as path weight or degree of similarity
between compounds in subsequent steps.

Disadvantages of path finding tools: (1) They do not take into account
stoichiometry and therefore do not guarantee that predicted paths allow the
net synthesis of a given end compound; (2) consequently, they cannot
predict the stoichiometry of paths; (3) they cannot find cyclic pathways
(trivial cycles excepted) or pathways in which the same enzymes act
repeatedly on a growing chain (e.g. in fatty acid elongation). However, they
can predict parts of these pathways; (4) path finding tools have difficulties
to correctly predict pathways located in the densely connected central
metabolism, such as glycolysis. In this region, currently employed criteria
such as weight or compound similarity are not sufficient to identify
relevant pathways in large networks; (5) most path finding tools require
parameter tuning with respect to the given input network (node weights,
cut-off on the number of paths requested).

For a more in-depth discussion of different pathway prediction
approaches we recommend (Planes and Beasley, 2008).

Not only do EM-based and path finding tools differ in their strengths and
weaknesses, they also answer different questions about metabolism. EM
analysis is applied to study well-known, often manually compiled, small
metabolic networks (less than hundred reactions) in order to gain insight
into the physiology of particular organisms (Poolman, et al., 2003; Van
Dien and Lidstrom, 2002) or to find elementary modes that have high
molar yields for a compound of interest (Carlson, et al., 2004; Liao, et al.,
1996). Knowledge of such elementary modes helps to produce desired
compounds more efficiently (Trinh, et al., 2009), e.g. by modifying the
compound-producing organism (Trinh, et al., 2006).

Path finding tools are obviously not suited for this kind of detailed
analysis. In contrast to EM analysis, they are applied to large metabolic
networks (up to several thousands of reactions), with the purpose of
predicting biosynthesis and/or biodegradation pathways in organisms or
sets of organisms (such as microbial communities) (e.g. (Dimitrov, et al.,
2004; Pazos, et al., 2005; Yamazaki, et al., 2004)) or to fill gaps in genome-
wide metabolic pathway reconstruction (Kharchenko, et al.,, 2006;
Kharchenko, et al., 2004). Future application of path finding in metabolic
reconstruction may go beyond gap filling. Current automated metabolic
reconstruction tools (e.g. (Karp, et al., 2002; Moriya, et al., 2007)) are
based on the mapping of enzymes onto pre-defined pathways, which
prevents the detection of variants of known pathways and novel pathways.
The more flexible path finding approach may help to solve these problems.
Currently, only MaGe (microbial genome annotation system (Vallenet, et
al., 2006)) integrates a path finding tool (PHT). Another interesting
application of path finding could be to predict pathways from gene
expression data, more specifically from sets of activated/repressed enzymes
(van Helden, et al., 2001).

To summarize: EM analysis is suitable for detailed analysis of small-
scale, high-quality metabolic networks, whereas path finding is designed to
predict pathways in large-scale, possibly low-quality metabolic networks.

In our opinion, EM and path finding should be perceived as
complementary tools that can be combined to explore metabolic diversity.
For example, path finding might be used as a first step to discover novel
pathways from various data sources (operons, synteny, gene expression),
which might then be submitted to EM analysis in order to extract consistent
modules of reactions. More generally, each approach is designed to answer
different questions, and cannot be compared to methods conceived for
other purposes. For example, Panke and co-workers analyze the dynacmis
of in vitro enzymatic systems using a formalism that relies on the precise
measurement of each enzyme’s condition (Hold and Panke, 2009; Makart,
et al., 2007). Palsson’s group applies flux balance analysis to model
genome-scale metabolic networks, in order to predict mutant phenotypes
under controlled conditions, and design mutants with improved
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biosynthetic efficiency (Edwards and Palsson, 2000; Herrgérd, et al., 2006;
Portnoy, et al., 2008). Yet other methods have been developed to address
different metabolism-related problems, whose enumeration is out of scope
for this comment.

Rather than comparing EM-based tools to path finding tools, it would be
much more interesting to compare path finding tools among themselves, or,
even better, to evaluate the best ways to combine these tools. Indeed, many
path finding approaches have been published that address the same
question, but rely on different strategies (compound similarity, node or
edge weights, rules) (Arita, 2003; Blum and Kohlbacher, 2008; Croes, et
al., 2005; Croes, et al., 2006; Ellis, et al., 2008; Faust, et al., 2009; McShan,
et al., 2003; Pazos, et al., 2005; Rahman, et al., 2004).

Currently, no approach is able to predict biochemically valid pathways
in a genome-scale metabolic network with 100% accuracy, leaving a
challenge for future research. Yet a greater challenge will be to perform
experimental validations of the predictions, which, so far, has been done
only in a very restricted number of cases (Table 1).
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Table 1. Selected examples of application cases of metabolic predictions that have been confirmed experimentally.
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6 Contributions to NeAT

Presented articles:

S. Brohée, K. Faust, G. Lima-Mendez, O. Sand, R. Janky, G. Vanderstocken, Y. Deville and
J. van Helden

NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways
Nucleic Acids Research, vol. 36, pp. W444-W451, 2008.

K. Faust!, S. Brohee, Gipsi Lima-Mendez, G. Vanderstocken and J. van Helden
Network Analysis Tools: from biological networks to clusters and pathways
Nature Protocols, vol. 3, pp. 1616-1629, 2008.

6.1 Presentation of NeAT

NeAT is a publicly available set of tools dedicated to the analysis of biological networks
[20, 52]. Most NeAT tools can handle large input networks and finish jobs within one minute.
NeAT can be accessed via a web server (http://rsat.ulb.ac.be/neat/), a collection of web ser-
vices (SOAP/WSDL interface) as well as on command line. The web server, web services
and the command line version are distributed on request and can be installed locally. NeAT is
designed to be modular, to allow for easy combination of tools and implementation of work-
flows. Tools can be combined programmatically via command line pipes and web services
or via mouse clicks on the web server. Each web server tool provides a number of buttons
that appear after completion of a job and which allow to send the results as input to another
NeAT tool without having to copy-paste. In addition, NeAT is documented on several levels:
Each tool comes with its command line and WSDL documentation. On the web server level,
a manual, a tutorial and at least one demo accompany most tools.

6.2 Tools contributed to NeAT

Table 6.1 lists the tools that I contributed to NeAT during my thesis. The tools make use of
a database containing metabolic data from KEGG and BioCyc. This database is described in
section 9.3.

'K. Faust and S. Brohée contributed equally to this publication.
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6.3 On the use of NeAT tools

6.3.1 Data input

Users can up-load their data to NeAT in two main formats: as a network (graph) or as a tab-
delimited table (note that tables can be interpreted as networks as well). NeAT supports a
variety of graph formats: tab-delimited (table with two selected columns), DOT [44], GML
[72] and some specialized tools also KGML, the XML format of KEGG. In addition, users
can retrieve networks from the two database interfaces offered by NeAT: one for STRING
[81] and the second for KEGG PATHWAY, which store data on protein-protein interactions
and metabolism respectively.

Usually, network nodes represent biological objects whose interactions have been deter-
mined by a variety of methods. For instance, a user interested in the analysis of protein
interactions might up-load a protein-protein interaction network having proteins as nodes and
their interactions as edges. In practice, this could be a tab-delimited file with two protein name
columns, where each row describes the interaction between two proteins. The user could then
up-load a second protein-protein interaction network and measure the overlap between the two
networks (see details in the Nature Protocol attached to this chapter) or compare the network
with experimentally obtained protein-protein interactions stored in STRING (experimental
data channel). With the path finder tool, the user could in addition enumerate paths between a
pair of proteins of interest.

6.3.2 Data output and interpretation

The main outputs of NeAT are tab-delimited tables displaying statistics or networks. Networks
can be returned in several formats: GML, DOT, VisML [76], tab-delimited and as adjacency
matrix.

For the path finding and pathway extraction tools in NeAT, it is often not easy to interpret
the output. For instance, the pathfinder tool lists paths in the order of their length (unweighted
networks) or their weight (weighted networks). In order to filter out irrelevant paths, users
have several possibilities: First and foremost, they can assign network weights that favor
certain nodes and penalize others. In addition, they can indicate nodes that have to appear in
paths or that should be avoided. Moreover, they can restrict the path length. For example, if
a user would like to predict a signal transduction pathway from a protein-protein interaction
network and has an idea about the minimal length (say 8 steps) of this pathway and some of
its participating proteins (e.g. STE20 and STE7), he or she can set these constraints in the web
form as minimal length and nodes to be included parameter values.

The pathway extraction tool outputs only one solution, namely the predicted pathway. How-
ever, the interpretation of a predicted pathway, especially if large, is not straightforward. Cri-
teria that could be taken into account for interpretation are:

e Seed node coverage. A high percentage of seed nodes among all pathway nodes indi-
cates that the predicted pathway is strongly supported by the seed nodes.
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Distance between seed nodes. The reliability of the predicted pathway decreases with
the distance between seeds. For instance, a long branch not supported by any seed node
except the terminal one very likely represents a false positive.

Presence of enyzmes catalyzing predicted reactions in the query organism. The pre-
dicted pathway consists of seed nodes and predicted nodes connecting the seeds. A
pathway is more reliable if all its predicted reactions are likely to be catalyzed in the or-
ganism of interest. However, reactions not associated to any gene in the query organism
might also be spontaneous. Also, some enzymes may be missing due to errors in the
genome annotation process.

Presence of predicted nodes in the source data set. Closer inspection of the source data
set may indicate that seed nodes and some predicted nodes belong to the same group.
For instance, in a microarray data set, genes may have been removed from a cluster
because their expression ratios were below the given threshold. However, these genes
may be part of the pathway connecting the seed genes.

Reproducibility. If several data sources exist for the same kind of data, pathway predic-
tion can be repeated in a network constructed from an alternative source. For example,
the pathway extraction tool offers metabolic networks from databases assembled by
two independent groups, namely the KEGG and MetaCyc teams. The reproduction of a
pathway discovered in the KEGG network with the MetaCyc network may increase the
confidence in this pathway.

Known pathways. Known pathways overlapping with the extracted pathway may help
to interpret the latter one. For instance, the extracted pathway may be a combination of
known pathways or may combine a known pathway with a novel one. To ease interpre-
tation, the pathway extraction tool displays links to the overlapping pathways annotated
in KEGG or MetaCyc (depending on the network used) and computes the significance
of their overlap using various metrics (e.g. Jaccard similarity).
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ABSTRACT

The network analysis tools (NeAT) (http://rsat.ulb.
ac.be/neat/) provide a user-friendly web access to a
collection of modular tools for the analysis of
networks (graphs) and clusters (e.g. microarray
clusters, functional classes, etc.). A first set of tools
supports basic operations on graphs (comparison
between two graphs, neighborhood of a set of input
nodes, path finding and graph randomization).
Another set of programs makes the connection
between networks and clusters (graph-based clus-
tering, cliques discovery and mapping of clusters
onto a network). The toolbox also includes programs
for detecting significant intersections between clus-
ters/classes (e.g. clusters of co-expression versus
functional classes of genes). NeAT are designed to
cope with large datasets and provide a flexible
toolbox for analyzing biological networks stored in
various databases (protein interactions, regulation
and metabolism) or obtained from high-throughput
experiments (two-hybrid, mass-spectrometry and
microarrays). The web interface interconnects the
programs in predefined analysis flows, enabling to
address a series of questions about networks of
interest. Each tool can also be used separately by
entering custom data for a specific analysis. NeAT
can also be used as web services (SOAP/WSDL
interface), in order to design programmatic work-
flows and integrate them with other available
resources.

INTRODUCTION

During the last decade, large-scale biological studies
produced huge amounts of data that reveal various
layers of molecular interaction networks: protein

interactions, transcriptional regulation, metabolic reac-
tions, signal transduction, etc.

Graphs (in the mathematical sense) have been used to
represent, study and integrate such biological networks.
By definition, a mathematical graph is a set of nodes
(generally represented as dots) that are connected by edges
(lines between dots). Edges may be enriched by several
features, e.g. a direction (an edge from node 4 to node B
is distinct from an edge from B to A), a color, a type and
a weight (a value is associated to the edges).

Such edges and nodes provide convenient ways to
represent biological features. For example, in a protein—
protein interaction network, a node represents a polypep-
tide and an edge indicates the existence of a physical
interaction between two polypeptides (1). A weight can
optionally be put on edges to reflect the strength of
interactions. In ‘compound-centric’ metabolic networks,
nodes represent metabolites and the directed edges
represent the enzymes used to convert a metabolite into
another one (2). The metabolic networks may also be
represented as bipartite graphs, i.e. a network with two
distinct types of nodes (one for compounds and one for
reactions), where edges must always link a node of one type
to a node of the other type (3,4). Similarly, graphs can be
used to represent regulatory relationships (5,6) and
transduction pathways (7). Network biology is emerging
as a very fertile field, as reflected by the rapidly increasing
pace of relevant publications (8,9).

Despite the ever-increasing availability of data that may
be represented as networks, large-scale analyses should be
considered with caution, for several reasons. Firstly, high-
throughput data are notoriously noisy (presence of false
positives) and incomplete (10,11). In addition, some
interaction networks have been characterized by several
independent studies, which are providing complementary
subsets of the data. Important efforts will thus be required
to extract reliable information from the ever-increasing
amount of data.

Specialized tools are required to extract and compare
information obtained from multiple data sources, and
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apply various statistical parameters treatments to describe
and understand networks properties. For this purpose, we
developed the Network Analysis Tools (NeAT), a set of
modular software tools supporting a large variety of
operations on networks and clusters. The web interface
provides a convenient and intuitive access to the tools and
allows to thread user-provided data sets through typical
analysis work flows, in order to interpret their networks.
The NeAT programs may be grouped in three categories:
tools for manipulating graphs (graph comparison, random-
ization, alteration, visualization, etc.), tools for analyzing
clusters (or, equivalently, classes) (cluster comparison, etc.)
and tools that establish the link between networks and
clusters (graph clustering, graph—cluster mapping, etc.).

NeAT DESCRIPTION

Figure 1 and Table 1 present the collection of tools
available in NeAT as well as their input and output types.
On the website, each tool is accessible via the menu on the
left panel of the web page (Figure 3, inset).

As shown in Table 1, NeAT tools can be broadly
grouped in three categories: network tools perform various

convert-graph

Netw ork/graph
User-provided netw ork |

String database interaction
netw ork

String
) Labeled graph

[ compare-graphs ’\ (intersection / union / difference)
[ |

random-graph J} Random graph
alter-graph I Altered graph
Labeled graph
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operations on one or several graphs, cluster tools are
mainly dedicated to comparisons between clusters and
network—clusters tools make the connection between
networks and clusters.

We will briefly describe the function of each tool
together and discuss some typical application. Further
information and examples of utilization can be found in
the cited literature.

NETWORK TOOLS
Network topology

Several statistics have been defined to characterize global
topological properties of a network. It has been shown
that these topological properties distinguish biological
networks from random networks. Noticeably, it is often
stated that the distribution of degree (the number of edges
connected per nodes) follows a power-law distribution
(12). The program graph-topology computes the degree of
each node of a graph, which can then be analyzed either as
a full result table or visualized as a XY plot (Figure 2).
Graph-topology also computes the betweenness (i.e. the
proportion of shortest going through a node) and the

[ convert-classes ]

!

Clusters/classes

User-provided clusters j

r User-selected nodes ;‘ r
v

‘.[

Neighbour-source
node pairs

graph-neighbours ]

—-[ Clustering (MCL / RNSC) ]—v| Node clusters |

—>[ graph-cluster-membership }

Fuzzy clusters
(membership coefficient table)

graph-get-clusters }-

(intra / inter — cluster edges)

Separate pathw ays

(sub-network)

Merged pathw ays
(sub-network)
T

Source and target nodes
v

_[

PathFinder )

l

| ! l

Statistics

[ display-graph ] [ graph-node-degree ] [ roc-stats ]—

ROC curve statistics

Node degrees

’ Graph draw ing |

Class comparison statistics

|
|
|
.

| { compare-classes ]

| |
contingency-stats Fﬁ

. 2 B AN 2

Contingency table ’*J
|

Contingency statistics

W [ method ] | Result |

Legend

Figure 1. Flow chart of the tools and data types supported on NeAT. Trapezoidal boxes represent user-provided input, rounded boxes programs and

rectangles results.
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Degree distribution
1000 . —_—

- freq
= inv_cum
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Degree

Figure 2. Node degree distribution of a yeast protein interaction
network obtained from two-hybrid data. The distribution was
computed with the program graph-topology and plotted on log scales
for both the abscissa and ordinates. The linear shape of the curve on
the log—log graph suggests that this network follows a power-law
distribution of degree. Color code : blue, absolute frequency; green,
reverse cumulative frequency.

closeness (i.e. the mean shortest distance of a node to all
others) of each node in the network.

Node neighborhood

Starting from one or several nodes of interest, the
program graph-neighbours collects neighbor nodes up to
a user-specified distance. Neighborhood analysis can be
for example applied to predict the function of an unknown
polypeptide by collecting its neighbors with known
function in a protein interaction network (‘guilty by
association’) (13).

Network comparison

The program compare-graphs computes the intersection,
the union and/or the difference between two input
networks and estimates the statistical significance of the
overlap (Figure 3, inset).

These basic operations between graphs can serve for
many other tasks: the union can be used to integrate
networks at different layers (e.g. metabolism, transduction
signal and transcriptional regulation), the intersection to
select interactions with evidences in two distinct experi-
ments, the differences to select interactions detected by
one method and missed by another one. A typical example
of application is to estimate the relevance of a protein—
protein interaction network obtained by some high-
throughput experiment, by comparing it with a manually
curated network [e.g. BioGrid or MIPS databases data
(14,15)].

w447

Evaluation of predicted networks using receiver operating
characteristic (ROC) curves

The program roc-stats is typically used as a postanalysis
program after a network comparison between predicted
and annotated networks. It takes as input a set of scored
results associated with validation status (positives or
negatives) and computes, for each threshold on the
score, the derived statistics: true positive rate (TPR, also
called sensitivity), positive predictive value (PPV), false
positive rate (FPR) and accuracy.

Those statistics are also further used to draw different
graphical plots showing the performance as a function of
the score threshold or allowing performance comparisons
(precision recall and ROC curves).

ROC curves show the fraction of the true positives
(TPR) versus the fraction of the (FPR) and are often used
to compare the predictive performance of different
programs (16).

Path finding in a network

Biochemical interactions form intricate networks, where a
multitude of pathways can be used to join two nodes of
interest. The search of optimal paths (minimizing the
number of steps, or the distance, or some weight) has a
long tradition in graph theory. Path finding algorithms
have been applied to uncover signal transduction path-
ways from protein—protein interaction networks (17-19)
or metabolic pathways in metabolic networks, respectively
(20-22). Recently, we evaluated the performance of a
k-shortest path finding algorithm for metabolic pathway
inference and found that the correspondence between
inferred and annotated pathways can be crucially
improved by setting an appropriate weighting on the
nodes of the metabolic network, in order to penalize
highly connected compounds (4).

The NeAT interface includes a general k-shortest path
finding algorithm, that supports searches from a set of
(one or several) source nodes to a set of target nodes (23).
Node weights can either be specified in the input graph or
computed automatically according to node degree (4).

Network randomization and alteration

Random graphs are extremely useful to analyze statistical
properties of graphs and to validate theoretical models
(24-27). The significance of some properties observed in a
biological network (e.g. node degree, clustering coefficient,
network diameter, etc.) can be estimated by measuring the
distribution of probability of the same property in a large
set of random networks. Random networks can also be
used to observe the behavior of a given algorithm (e.g.
clustering) in absence of biological information.

The program random-graph supports different proce-
dures to randomize a network, which can then be
submitted to the same workflows in the same way as a
real biological network. Random graphs can be generated
from the scratch, according to an Erdds-Renyi model.
Alternatively, random graphs can be generated by
permuting the edges between the nodes of a given input
graph. This randomization preserves the degree of each
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Figure 3. The compare-graphs result. Main figure: result of the comparison between two large-scale yeast protein interaction networks obtained by
the two-hybrid method (41,42). The networks were compared using compare-graphs and displayed with yED. Edge color code: green, edges present in
both networks (intersection); red, edges present in Ito’s data set only; violet, edges present in Uetz’ dataset only. Inset: comparison statistics,
including an estimation of the significance of the intersection between the network comparison, based on the hypergeometric distribution.

node. A third mode of randomization preserves the degree
distribution of the input graph, without preserving the
degree of individual nodes.

Another tool, alter-graph, performs a partial randomi-
zation of a given input graph, by combining two
operations: random addition and/or deletion of nodes
and/or edges. Altered graphs are particularly useful to
study the robustness of procedures to the presence of noise
(node/edge additions) or to missing information (node/
edge deletions). This tool was used in our comparative
assessment of four graph-based clustering algorithms (26).

Network display

NeAT includes a tool called display-graph, which generates
static images of an input network. Such drawings are
convenient for a quick inspection of the results from the
web browser, especially when dealing with large graphs.
However, the cost of this speed is that the layout is rather
rudimentary and the resulting image is static.

For more sophisticated layouts and for a dynamical
manipulation of the drawing, NeAT is also able to load a
network directly into the ViSANT graph editor via Java
Web Start (28).

For more advanced visualization facilities, we recom-
mend specialized graph editors like yED Graph Editor

(http://www.yworks.com/en/products_yed about.html)
and Cytoscape [(29), http://www.cytoscape.org]. To this
purpose, the tool convert-graph permits to export any
network resulting from NeAT to the GML format (http://
www.infosun.fim.uni-passau.de/Graphlet/ GML/gml-tr.
html) which is supported by both editors.

CLUSTER TOOLS

NeAT also presents a series of tools allowing to study
clusters or classification (functional classes) (Table 1,
clusters tools). For example, the program compare-classes
can study if among the clusters of highly connected nodes
extracted from a graph via some clustering algorithm,
some overlap with biological relevant classes [e.g. gene
ontology classes (30)] exists. This program also allows to
create a contingency table that can be further analyzed via
the contingency-stats application.

NETWORK-CLUSTER TOOLS
Network clustering

Various algorithms have been implemented to extract
clusters (i.e. groups of densely connected nodes) from
biological networks. Clustering algorithms are often used
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Figure 4. Comparison between a network and a set of classes. Mapping of the yeast protein complexes stored in MIPS database (15) on a large-scale
interaction data set obtained by coimmunoprecipitation followed by mass spectrometry experiments (39). The mapping and coloring was performed
with graph-get-clusters, and the image generated with the graphical editor yED. Intercluster edges (edges between nodes that do not belong to the
same complex) are displayed in gray. Intracluster edges (edges between nodes belonging to the same complex) are colored with cluster-specific colors

(one color for each protein complex).

in biology in order to extract coherent groups of nodes
from networks : detection of protein complexes (26,31—
33), of protein families (24), extraction of co-expressed
clusters from in co-expression networks (35), etc.

The graph-based clustering algorithms MCL (34,36)
and RNSC (37) have been shown to obtain good
performances for extracting protein complexes from
protein interaction networks (26). These algorithms can
deal with large graphs and are very efficient in time. For
these reasons, we included them in the NeAT tool suite.

Moreover, NeAT also includes a tool that discovers
cliques (fully connected set of nodes) in networks.

From partitions to fuzzy clusters

As many clustering algorithms, MCL or RNSC partition
the graphs into nonoverlapping clusters: each node is
assigned to one and only one cluster. However, in some
types of biological data, a single assignment may fail to
represent multiple relationships between a node and
various types of neighbors (for example, a protein may
be part of different complexes).

Some graph-based clustering algorithms support multi-
ple assignment and nonassigned nodes (i.e. fuzzy cluster-
ing), but the tuning of their parameters is sometimes
delicate and the results can sometimes be weaker than
those of a partitioning algorithm.

To keep the best of both worlds, an approach is to first
run a partitioning algorithm and to postprocess its result
by measuring a posteriori the membership between each
node and each cluster of the partition. The membership of

a node to a cluster is the proportion of edges from this
node that reach that cluster. If the graph is weighted, the
membership can take edge weights into account.

This two-step approach has been used to perform a
reticulate classification of phages and detect mosaic
phages resulting from fusions between other phage
genomes (38). The program graph-cluster-membership
takes as input a graph and a clustering result, and returns
a node/cluster table indicating the degree of membership
of each node to each cluster.

On the NeAT site, clustering results can automatically
be launched to the graph-cluster-membership form. graph-
cluster-membership can easily be adapted to be combined
with other graph-based clustering algorithms.

Mapping of classes onto network

NeAT program graph-get-clusters then allows to extract or
to map node clusters onto the network. A first function of
such a mapping is to visualize the coherence of protein
clusters or functional classes in the context of the network.
Figure 4 displays a typical example of graph-get-clusters
results, where known protein complexes (15) have been
mapped onto a yeast protein interaction network obtained
by high-throughput co-immunoprecipitation experiments
(39). Edges between proteins belonging to annotated
structural complexes have been colored according to their
cluster (complex) membership. This helps the user to
visualize the position of complexes in the interaction
network.
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DOCUMENTATION

NeAT programs are documented at various levels. Firstly,
a manual is accessible from each query form, providing a
systematic description of the parameters. Second, DEMO
buttons automatically fill the query form with predefined
examples (data sets + parameter values), in order to give
the intuition of the result returned by the tools on a typical
situation. Third, NeAT contains a tutorial, where users
can learn using the tools on the basis of concrete
biological data sets.

IMPLEMENTATION AND AVAILABILITY

Unless otherwise specified, all interaction data sets
available in the NeAT demonstrations and the tutorials
were downloaded from the BioGrid database (14) (http://
www.thebiogrid.org/).

Moreover, NeAT includes a tool allowing to download
and precisely filter subsets of the String database. This
database contains protein interaction data obtained by
integrating known and predicted interactions from a
variety of sources (40).

Except for the path finding and the graph layout
algorithms, all NeAT programs were developed in Perl
and can be used as stand-alone applications on UNIX-
based systems (tested on Linux + Mac OSX). The stand-
alone version is freely available for academic users upon
request (see Informations on the NeAT website).

The large majority of NeAT tools allows the treatment
of graphs with several thousands of nodes and several tens
of thousands of edges in a reasonable time. Typical
published biological networks (a few thousands of nodes
and tens of thousands of edges) are treated within seconds.
However, some tools may be slower (cliques discovery
(NP-hard), betweenness and closeness computation), but
the execution time stays reasonable (minutes).

The web site (http://rsat.scmbb.ulb.ac.be/neat/) is free
and open to all users and there is no login requirement.

NeAT programs are also accessible as web services
(interface SOAP/WSDL), which allows to design pro-
grammatic workflows and integrate NeAT tools with
various remote resources (databases and software tools).
Actually, our website is itself a client for the web services,
which guarantees a constant care for maintaining func-
tional web services.

CONCLUSION

The Network Analysis Tools provide bioinformaticians
and biologists with a set of web tools that can be
combined to efficiently perform the main graph operations
(comparison, node degree computation, clustering, etc.)
used in today’s network biology. As all programs can be
integrated in workflows, either on our website or via
SOAP web services, users can easily use them to study the
topology of a network of interest, discover densely
connected groups of nodes, compare these groups to
some reference classification and run negative control by
submitting randomized graphs to the same analysis.

Nucleic Acids Research, 2008, Vol. 36, Web Server issue

With the increasing number of studies involving
biological networks, we are confident that the NeAT
web server will be useful to biologists in general and to
network bioinformaticians in particular.
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Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks:
comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree
distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network
through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined
to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically
subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks
comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and

executed in ~1 h.

INTRODUCTION

This is the last article in a series of four protocols for the analysis of
regulatory sequences with the Regulatory Sequence Analysis Tools!
(http://rsat.ulb.ac.be/rsat/) and biological networks with the
Network Analysis Tools (NeAT)? (http://rsat.ulb.ac.be/neat/). The
first article® presents a protocol to predict the location of binding
sites for transcription factors whose specificity is already known
(pattern matching). In the second article*, we describe a protocol
for the ab initio discovery of biological signals in biological
sequences (pattern discovery). The third article® shows how to
write scripts to automate the analysis on multiple clusters of genes
using Web services. In this article, we describe a workflow for
deciphering biological networks by combining network compar-
ison, module identification and path finding. This protocol can be
executed independently of the three other ones.

Network biology is emerging as a new field in biology, due to the
increasing availability of genome-scale data sets of molecular
interactions, such as those resulting from high-throughput
technologies (e.g., protein interactions, regulatory networks and
metabolome). Extracting relevant information from this huge
amount of data requires dedicated tools. These data sets are
commonly represented as graphs (or networks), where nodes
represent molecules, and arcs their interactions. This representation
eases data integration and makes it possible to apply well-known
network algorithms to analyze the data.

In this protocol, we show how large biological networks can be
explored by combining a set of modular tools accessible via a Web
interface named NeAT. We describe hereafter the typical questions
that can be addressed.

Network topology. It has been observed that some topological
properties  distinguish  biological networks from random
networks®’. Noticeably, the distribution of degree (the number of
arcs connected per nodes) is often claimed to follow a power-law
distribution®3, The tool graph-topology can be used to analyze the
degree distribution of any kind of network.

Network comparison. Given two networks (i.e., protein—protein
interaction networks from two different experiments), one would
like to analyze their degree of overlap. This question is answered by
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the tool compare-graphs, which computes the intersection, union
and difference between two networks and estimates the statistical
significance of the overlap.

Node neighborhood. Given a protein, gene or another node in a
biological network, it is of interest to identify its direct or
indirect neighbors in this network. This is the task of the tool
graph-neighbours, which returns the neighbors of a query node in
a network up to a certain distance. This tool can be applied for
instance on protein—protein interaction networks to retrieve the
interaction partners of a given protein.

Cluster analysis. Various algorithms have been implemented to
extract clusters (i.e., groups of densely connected nodes) from
biological networks®13, Among those, MCL!* algorithm has been
shown to obtain good performances for extracting protein
complexes from protein interaction networks'>~!7. In addition,
this algorithm can deal with large graphs and is very efficient in
time. For these reasons, we included MCL in the NeAT suite. The
clusters resulting from MCL or other methods can be compared to
some reference groups (e.g., functional classes) with the program
compare-classes and mapped onto networks with graph-get-
clusters. Upon partitioning with MCL, each node belongs to only
one cluster. However, sometimes the assignment of a node to a
single cluster is an over-simplification of the biological data, for
example, a protein may be part of different protein complexes. In
those cases, it would be better to describe how much each node is
related to the different clusters. The program graph-cluster-
membership postprocesses a clustering result and calculates the
membership as the proportion of edges (or weight) linking each
node to each cluster. The node—cluster relationships are described
as a membership matrix, where each row represents a node and
each column a cluster.

Path finding. Given a biological network and two nodes of interest,
a common task is to find a biological meaningful path connecting
those nodes in the network. For instance, path-finding algorithms
are applied to uncover signal transduction or metabolic pathways
in protein—protein interaction or metabolic networks, respec-
tively!8-21, Recently, we evaluated the performance of a k-shortest
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path-finding algorithm for metabolic pathway inference and found
high accuracies if appropriate weights are set on the network??,

Network randomization. Negative controls are essential to esti-
mate the relevance of the results. The tool random-graph proposes
different procedures to randomize a network, which can then be
submitted to the same workflows as the original network.

Network alteration. To test the robustness of analytic methods to
the presence of noise, or to the incompleteness of information, the
tool alter-graph allows to modify an existing network by random
addition or deletion of nodes and/or edges.

Network display. NeAT includes a tool called display-graph,
which generates static images of the input networks. Such drawings
are convenient for a quick inspection of the results from the Web
browser. For more sophisticated layouts and for a dynamical
manipulation of the drawing, we recommend graph editors such
as yEd (http://www.yworks.com/en/products_yed_about.html) or
Cytoscape??. The tool convert-graph permits to export any network
analyzed with NeAT into Graph Modeling Language (GML)
(http://www.infosun.fim.uni-passau.de/Graphlet/ GML/gml-tr.html),
a file format supported by both editors.

Figure 1 depicts the way in which the NeAT can be connected.
We suggest the reader to follow this flow chart progressively during
the execution of the protocol.

Comparison to other graph analysis tool suites

A large variety of graph analysis tools exist. We may classify them in

three categories: (i) libraries that can only be used programmati-

cally, for example, Boost (http://www.boost.org/), igraph (http://
cneurocvs.rmki.kfkihu/igraph/index.html) or JUNG (http://
jung.sourceforge.net/); (ii) stand-alone tools with graphical user
interface (GUI) (Pajek?**, Network Workbench (http://nwb.slis.
indiana.edu), BiologicalNetworkszs, VisANTZ26, yEd, Cytoscape,
etc.) and (iii) tools with GUI available via the Web such as tYNA

(http://tyna.gersteinlab.org/tyna/) or CABiNeT (http://mips.gsf.de/

genre/proj/CABiNet/).

Usually, the libraries offer generic graph algorithms, whereas
stand-alone or Web-based tool suites are often specialized. For
instance, VisANT, Cytoscape (with its plugins) and BiologicalNet-
works focus on the analysis and display of biological networks,
whereas yEd offers a flexible interface for the display, layout and
edition of general-purpose graphs, but is equipped with limited
analysis functions. Pajek and Network Workbench are stand-alone
tools for generic graph analysis. Cytoscape (with plugins) and
BiologicalNetworks allow in addition retrieval and integration of
biological networks.

We describe hereafter some of the advantages and current
limitations of NeAT.

Main advantages. The main advantages of NeAT are
(1) NeAT supports a variety of modular tools, which can either be

used separately, or combined in a workflow. These tools
include a number of unique features (fuzzy clustering, Web
access to MCL and RNSC, k-shortest paths with multiple start
and end nodes, statistical comparison of classes and clusters,
etc.) that are currently not available in other packages.

(2) The programs are designed to enable treating very large graphs
(several thousands of nodes) without excessive cost in memory
or time.

(3) Although most of the analyses can also be performed in
specialized software packages such as R, the NeAT Web site

PROTOCOL |

offers a user-friendly access for biologists who are not familiar
with programming languages.

(4) NeAT can be run on command line, either by installing it locally
or by calling Web services. This is not the case of the other stand-
alone and Web-based tools (a notable exception is Pajek). The
programmatic access (either as stand-alone application or as
Web services) allows one to automate the executions of work-
flows for multiple data sets, which would require hundreds or
thousands of manual operations with conventional GUIs or on a
Web site. To our knowledge, there is only one other network
tools suite enabling workflows, namely tYNA. NeAT and tYNA
are complementary: NeAT supports path-finding, graph-based
clustering (MCL, RNSC and fuzzy clustering), network rando-
mization and cluster comparisons, whereas tYNA includes tools
to find motifs in networks. Because both tools support Web
services, they can be easily combined in workflows, either by
programming client scripts or using GUIs such as Taverna®.

(5) NeAT may be used for any kind of network, but it was
developed with biological networks in mind. The tools have
been extensively tested on a variety of biological networks
(protein—protein interaction networks!’, evolutionary net-
works?® and metabolic networks??2). Extensive evaluation is
rarely reported for other biological network tools suites.

Main limitations. NeAT essentially provides facilities for the
analysis of networks, clusters and pathways, but is not focused on

Flow chart of NeAT demo workflow

Yeast synthetic
MIPS Yeast STRING o R
r’mp—.—’ m ethaly BIoGRID
Steps 4-10 e
Steps 27-36 Steps 37-39 Steps 40-46
Compare- Random- 3
MCL ' graphs l graph Pathfinder '
Node cluster Network inter Randomized
memberships section network
7
Steps 11-15.
Steps 20 and 21
Steps 22-26
Graph-get- Compare- Convert-
clusters classes graph
Clustered graph
Steps 16 and 17
Display-
graph
Netwok Fuzzy cluster Sortable Interactive N Sortable
image membership comparison netwok of paths paths
L matrix table display in yEd table
or Cytoscape

Legend

I User date | Tool Input/output

Figure 1 | Flow chart of the data, tools and results described in this protocol.
Yellow represents the data set, orange the tool and light brown the results.
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the problem of network visualization. This limitation, however, is
easily circumvented by installing some specialized visualization
software: all graphs generated by NeAT can be exported to several
formats, including GML, which can be loaded with Cytoscape, yEd
and VisANT, and DOT, which can be loaded with Graphviz.

To summarize, NeAT addresses the needs of researchers
interested in the analysis of biological networks. Some tools may
require background knowledge (e.g, MCL, fuzzy clustering),
whereas others are intuitive and easy to use (e.g., graph conversion
and comparison).

For the user with experience in programming, NeAT can be run
on command line or within workflow management environments
such as Taverna. Otherwise, the user may access NeAT via its Web
interface, guided by tutorials and demos. To our knowledge,

no other biological network tools suite exists that combines all
the features of NeAT.

Other applications of this protocol

For the sake of consistency, the cases treated in this protocol are
restricted to protein interaction networks. The tools available in
NeAT can also be used to analyze other types of biological networks
representing other types of interactions, for example, regulation,
signal transduction, metabolic reactions, and ecology. The fuzzy
clustering approach was initially conceived to address the problem
of classifying phage genomes while taking into account the frequent
exchanges of genetic material between them?®, The k-shortest path-
finding algorithm has previously been applied to infer relevant
pathways in metabolic networks?*3°,

MATERIALS

EQUIPMENT

« This protocol describes an online tool. The only requirement is a computer
with Internet connection. Optionally, you can install yEd (http://www.
yworks.com/) or Cytoscape?’ for visualization

+ Sample interaction networks, which can be obtained from various biological
databases. As examples, we cite the following:

STRING?! (http://string.embl.de/), a database integrating seven different
types of evidences for physical and/or functional interactions between
proteins: experimental evidences, phylogenetic profiles (‘co-occurrence’),
gene fusion/fission, synteny (‘neighborhood’), coexpression, text mining
and a data set called ‘database’ regrouping several criterion selected by the
STRING annotation team

* BioGRID*? (http://www.thebiogrid.org/), a database of protein and genetic
interactions including > 116,000 curated interactions from yeast,
Caenorhabditis elegans, drosophila and human

+BioCyc®* (http://www.biocyc.org/) or KEGG** (www.genome.jp/kegg/), the
two main metabolic pathway databases

+ The data required for the study cases treated in this protocol is available in
the data repository site: http://rsat.ulb.ac.be/nedt/. All the networks used to
illustrate this protocol were taken from the yeast Saccharomyces cerevisiae.

We selected various networks representing diverse types of interactions

between biological molecules (protein interactions, metabolism, protein

complexes, genetic interactions, etc.)

+ Protein—protein interactions (physical and functional). From the STRING
database’!, we extracted a subset labeled as ‘database’ by the STRING team.
Under this label, they regrouped different types of protein—protein interactions

BOX 1 | MAIN GRAPH FORMATS

and metabolic relationships (Jensen L., personal communication). This
network contains 1,237 nodes representing proteins, and 11,027 edges
representing a mixture of physical and functional protein—protein interactions.
The interactions between two proteins are considered symmetrical; it is an
undirected graph. The network is stored in data repository, a tab-delimited
text file named yeast_string_database_graph_names_undirected.tab

+ The synthetic lethality network was extracted from the BioGRID
database’?. It represents genes (2,353 nodes) whose individual deletion is
viable, but whose paired deletions (12,419 edges) are lethal

« Protein complexes. The file mips_complexes_names.tab describes the
collection of protein complexes annotated in the MIPS database™.
Complexes detected only by high-throughput experiments were discarded
from the data set. The first column of the file gives the gene name, the
second column the complex name and the third column the gene identifier.
In total, the file contains 1,121 distinct proteins forming 243 distinct
complexes. Note that a protein can belong to several complexes

- Signal transduction pathway. As study case for the path finding, we take a
yeast signal transduction pathway mentioned by Scott and colleagues'®.
This pathway, known to regulate filamentous growth in yeast, starts with
RAS2 and ends with TECL. The authors attempt to recover this pathway
with a path-finding algorithm based on color coding!®. We will try to
recover it using Pathfinder

+ Incompatibility between file formats is a constant problem in bioinformatics.

To facilitate the use of the Web site, most tools support several among the

most popular formats used to describe networks. A description of the

supported format is given in Box 1

The tab-delimited format is a convenient and intuitive way to encode a graph. Each row represents an edge and each column an attribute of
this edge. The two column fields are the source and target nodes. If the graph is directed, the source node is the node from which the arc leaves
and the target node is the node to which the arc arrives. Logically, in undirected graph, the columns containing the source and the target nodes
may be swapped. Orphan nodes can be included by specifying a source node without target. Some additional edge attributes (weight, label,
color) can be placed in additional columns. The tool Pathfinder extends this format by supporting any number of attributes on nodes or edges.
Check the Pathfinder help page for more details.

The GML format allows for the specification of additional layout and display attribute, such as node position, as well as the color, the label and
the width of nodes and edges. A Graph Modeling Language (GML) file is made up of nested key-value pairs. The most popular graph editors
(such as Cytoscape and yEd) support GML as input format.

The DOT format is a plain text graph description language. DOT files can be loaded in the programs of the suite Graphviz (http://
www.graphviz.org/). It is a simple way of describing graphs in a human- and computer-readable format. Similar to GML, DOT supports
various attributes on nodes (i.e., color, width, label).

Several tools also accept adjacency matrices as input. An adjacency matrix is an N x N table (with N the number of nodes), where a cell A[7,]
indicates the weight of the edge between nodes 7 and j (or 1 if the graph is unweighted).

The Network Analysis Tools program convert-graph facilitates the handling of these formats by supporting interconversions between various
input (tab, gml, adjacency) and output formats (tab, dot, gml, adjacency).
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PROCEDURE

Downloading a sample network

1| We will show on an example workflow how the different tools of NeAT can be combined to analyze a network taken from
the STRING database. Open a connection to the data repository for this protocol (see EQUIPMENT).

2| Download the network file yeast_string_database_graph_names_undirected.tab on your computer. It is described in a
tab-delimited file that contains five columns. Each row represents one interaction between two genes or between their products.
As described in Box 1, the two first columns indicate the name of the Source and Target genes/proteins of the source and target
nodes. The third column contains a score ranging from 0 to 900, which reflects the reliability of the indications available for
this interaction. Higher scores represent more reliable interactions. In this case, the score is higher if an interaction is found
several times in different data set. The columns 4 and 5 contain the gene identifiers corresponding to the gene names in
columns 1 and 2.

3| Open a connection to the NeAT Web server: http://rsat.ulb.ac.be/neat/.

Cluster analysis

4| Extracting clusters from the network with MCL (Steps 4-10). We will first apply graph-based clustering to detect groups of
highly interconnected nodes in the sample network. For this, we will use the MCL algorithm, a fast unsupervised clustering
algorithm based on simulation of flows in graphs'4. In the menu from the left panel, click on the link MCL clustering to open
the MCL query form.

5| Click on the Browse. .. button, and choose the file containing the network (e.qg., yeast_string_database_graph_names_
undirected.tab for the study case discussed here).

6| Specify the columns containing the source, target and (optionally) weight attributes of the tab-delimited file. In our
example file, the source and target columns are by default 1 and 2 so we only have to add the weight column:

Weight column = 3. Note that if you want to work with the gene identifiers instead of the gene names, you could have used
value 4 and 5 in the source and target column fields. However, this is not recommended in this protocol as in the following we

will only work with gene names.
A CRITICAL STEP The weighting of edges strongly affects the MCL result, because the principle of the algorithm is to iteratively

enforce the weight of the most “important’ edges in the network. The ‘importance’ of an edge is determined by both its initial weight
and its place in the network.

7| Choose an inflation value (between 1.2 and 5). For the study case, select 1.8.

A CRITICAL STEP This parameter acts on the granularity of the clustering procedure, that is, the number of clusters (and
consequently the number of elements per cluster). The number of clusters increases with the inflation value. This parameter must
thus be fine-tuned according to the structure of the network. In a recent evaluation, we found that an inflation value of 1.8 was
optimal for protein-protein interaction networks®’.

8| Click on the GO button. The processing should take a bit less than one 1 min.
? TROUBLESHOOTING

9| The result page displays a figure showing the cluster size distribution, that is, the number of clusters (ordinate) of each
size (abscissa). The page also contains a link to the clustering result. This file can be saved by right-clicking on the URL link
and selecting Save link as. .., and save it on your computer under the name yeast_string_MCL_clusters.tab.

10| To inspect the result file, you can either use a text editor to open the file yeast_string MCL_clusters.tab stored on

your computer, or click on the URL on the result page. The MCL result is a simple two-column table, where the first column
indicates the node names (gene names in our case), and the second column the cluster names. A quick inspection of this table
from top to bottom shows that the first clusters contain more nodes than the last ones. MCL sorts the clusters by decreasing
order of size.

11| Extracting the subnetwork defined by the clusters (Steps 11-17). We will now map the clusters resulting from MCL onto their
original network. For this, there are two alternative ways to proceed: directly load the files stored on the server (option A) or
transfer the network and cluster files from your computer (option B).
(A) Directly load the files stored on the server
(i) The MCL result page displays a ‘Next step’ box, allowing you to send the MCL output to several alternative tools. Click the
button Map those cluster on the network. This will call a form graph-get-clusters, with prefilled values for the parameters
Graph and Clusters.
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(B) Transfer the network and cluster files from your computer
(i) An alternative way to enter data in the tool graph-get-clusters is to click on the link ‘Map clusters onto network' in the
left menu. This will open an empty form, in which you will have to enter the data (for our study case, the graph is in
the file yeast_string_database_graph_names_undirected.tab and the clusters in the file yeast_string MCL_clusters.tab).
However, this would require to transfer those two files to the server, albeit it already contains a copy of both in the
temporary directory. Whenever possible, you should thus use the ‘Next step’ buttons rather than transferring the files back
and forth between your computer and the server.

12| The main choice for the tool graph-get-clusters is the output type. The program supports two types of operations between
the network and the clusters. (i) The option annotated graph labels each edge according to its intracluster or intercluster
nature. (ii) intracluster edges selects a subnetwork restricted to the intracluster edges (intercluster edges are simply deleted
from the network). You can experiment the three options. In this section of the protocol, we will extract the subnetwork
defined by the MCL clusters. For this, select the option intracluster edges.

13| Several output formats are proposed, but for the visualization purpose, select the intracluster edges output in the
GML format.

14| Click on the button GO.

15| The result page should appear after <1 min, displaying a set of buttons for postprocessing the graph-get-cluster result,
and a link toward the result file. You can store the resulting GML graph on your computer for later use by right-clicking on the
URL in the graph-get-clusters result page. Save the result in a

file named yeast_string_MCL_intra_cluster.gml. a

16| A quick way to visualize the result is to fetch it to the
NeAT visualization tool. However, beware that this tool offers
limited functionalities: it returns a static image, with a sim-
plistic layout. The main function of this tool is to provide a
quick view of the result, before visualizing it with specialized
tools. To visualize the result network with NeAT, click on the
button Display the graph. A new form will then be displayed.
Select the desired output format. If the network is weighted
(e.g., our study case), you can activate the option Edge width
proportional to the weight. To obtain the figure, click on the
button GO. This process may be slow (>1 min) depending on
the size of the graph.

17| For a better visualization of the network, open the GML
formatted file obtained in Step 15 with Cytoscape, yEd or any
other visualization program of your choice. After having
opened the GML file, you need to apply some layout to display
nodes and edges harmoniously. For yEd and Cytoscape we
recommend the option Organic layout. After this, you should
see a set of well-separated components, each corresponding to
a MCL cluster. Each cluster is displayed with a specific color for
the edges (Fig. 2a).

? TROUBLESHOOTING

18| Mapping the clusters onto the network (Steps 18 and 19).
In the previous section, we used graph-get-clusters to sepa-
rate the MCL clusters by deleting intercluster edges from the
original network. Alternatively, the same tool can be used to
label all the edges according to the cluster composition.
Come back to Step 12, but this time, select ‘annotated graph

(au edges)’ as output type. Figure 2 | Mapping of the clusters obtained with the MCL algorithm on the

STRING database data set. (a) Only the intracluster edges were conserved and
each cluster is highlighted with a different color. (b) Intercluster (black) and

19| Repeat Steps 13-17, and compare visually the result with
that obtained in the previous section (Fig. 2b).
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Fuzzy clustering

20| We will now use the tool graph-cluster-membership to compute the degree of membership of each node to each of the
cluster obtained from MCL. This can be done in either of two ways. (i) Come back to the page with the MCL output and click on
‘Cluster membership’ to open graph-cluster-membership. (ii) Alternatively, you can click on the link Cluster membership in
the left panel, and specify the graph parameters as in Steps 5 and 6. To upload the MCL output, click on the button besides
‘Upload clusters from file’: and specify the location of the file yeast_string_MCL_clusters.tab on your disk.

21| Search for the membership matrix and select weight as stat.

A CRITICAL STEP For weighted graphs, weight or relative weight may be chosen. Otherwise, the strength of the links is not
considered for calculating the membership of a node to a cluster. When relative weight or relative edge is selected, the weights or
number of edges of a node to a cluster are divided by the number of nodes of that cluster.

22| Click on the GO button. After a minute, a page appears with links to three files: a tab-delimited text file, and two image
files providing, respectively, low- and high-resolution heatmaps. In all cases, the output displays the membership matrix,

where entries correspond to the membership degree of the node given by the row to the cluster given by the column. The
text-formatted table contains the numeric values of the memberships coefficient associating each node (row) to each cluster
(column). This is a tab-delimited file that can be loaded in various programs (e.g., Excel, R) for further processing. The heatmap
is a graphical representation of the same data, where the gray level is proportional to the degree of membership (Fig. 3).

? TROUBLESHOOTING

23| Comparing the clusters with reference classes (Steps 23-27). To evaluate the biological relevance of the clusters discovered
with MCL, we can compare them with some reference classification, for example the Gene Ontology3® or the collection of protein
complexes from the MIPS database. To illustrate this, we will compare the MCL clusters obtained above with the complexes
stored in the MIPS database. Each MCL cluster will be compared to each complex of the database. Cluster/complex comparisons
will then be scored with different statistics described in the manual page of the tool and in Box 2. Come back to the page with
the MCL result (Step 9). On in the Next step box, click on the button ‘Compare these clusters with other clusters’. Alternatively,
in case you saved the MCL result in a file, you can directly click on the link Compare clusters/classes in the left panel and
upload the MCL result file with the Browse button under query class.

24| As reference classes, we will use the collection of MIPS complexes. For this, first download the file mips_complexes_
names.tab from the data repository (see EQUIPMENT).

25| We will now specify the reference classes in the compare-classes form. To indicate that MIPS complexes will serve as
reference classes, click on the Browse. .. button below Reference classes, and select the file mips_complexes_names.tab that
you downloaded on your computer at Step 24. In NeAT, classes are described with the same tab-delimited format as clusters:
each row describes the membership of
one element (first column) to a class
(second column). Optionally, an addi-
tional column can be specified with the
option ‘Score column’, to indicate a
score that will be used to compute some
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BOX 2 | METRICS FOR COMPARISONS BETWEEN CLASSES OR BETWEEN GRAPHS

In several sections of this protocol, we try to detect significant intersections between two classifications (e.g., MCL clusters, MIPS complexes,
etc.) or between two graphs (e.g., interactome). The Network Analysis Tools suite includes specialized programs to compare classes/clusters
(compare-classes), or graphs (compare-graphs), using various comparison statistics.

In both cases (classes or graphs), we can consider that we have a finite set of N elements. For compare-classes, N is the total number of
elements that can be a member of any reference or query class (e.g., all the yeast genes). For compare-graphs, the N elements are all the edges
that could possibly be traced between any pair of nodes of the input graph (e.g., all possible intersections between any pair of proteins).

Let us then define

N the total number of elements in the universe (cluster/class members for compare-classes, graph edges for compare-graphs);
R a reference set (one class/cluster, or one graph), containing Nr elements;

Q a query set (one class/cluster, or one graph), containing Ng elements;

c the intersection between a query and the reference set;

Nc the number of elements in this intersection.

Maximal number of edges in a graph
The maximal number of arcs between a set of X nodes depends on whether this graph is directed or not and on whether it does or does not admit
self-loops. We can easily compute the value in the four possible cases.

Directed  Self-loops Number of edges

Yes Yes N =X

Yes No N=X —X=XX-1)
No No N =20

No Yes N = w = X(Xz”)

The column “Number of edges” corresponds to the N used for the statistics on graph comparisons.

Jaccard coefficient
The Jaccard coefficient is defined as the ratio between the intersection and the union between two sets.

J = RNQ _ Nc
~ RUQ ~ Nr+Ng—Nc*

The advantage of the Jaccard coefficient is that it gives us an intuitive perception about the mutual coverage of the query and the reference.
However, it presents the weakness to be independent of the absolute sizes of the union and intersection. For example, an intersection

of 1 element between a set of 3 and a set of 2 elements will give the same Jaccard coefficient as an intersection of 100 between a set of 300
and a set of 100 elements, whereas the random expectation for these two events is very different. A more reliable statistics is the
hypergeometric coefficient, as discussed below.

The hypergeometric probability

The hypergeometric distribution is often used to estimate the significance of the intersection between two random selections in a set. The
classical example of application of the hypergeometric distribution is the random selection without replacement in an urn containing a set of
white and black balls.

The reference set (classes or graph) can be assimilated to the black balls of the urn example. The query set corresponds to the selection without
replacement (indeed, a member cannot appear several times in the same class and an edge cannot appear several times in the same graph).
The hypergeometric P value indicates the probability to observe by chance at least x elements at the intersection between the query set and the
reference set.

gl
Pa = P(X > No)= 3 Bee.
i=Nc N

The P value can be interpreted as the probability for one comparison to return a false positive.

In the case of compare-classes, an important correction has to be done for multitesting. Indeed, each class of the query set (e.g., MCL clusters)
will be compared to each class of the reference set (e.g., MIPS complexes). The number of comparisons is thus the product between the number of
classes in the query set, and in the reference set, respectively. Thus, the nominal P value can be misleading because even a low P value is expected
to emerge by chance when the number of comparisons is very high. A classical correction for this multitesting is to compute the E value.
Eval=T - Puar
where T is the number of tests. The E value represents the number of false positives to be expected in a battery of t-tests.

To give a realistic order of magnitude, in our study case, we compared 243 clusters obtained from MCL with 107 complexes annotated in the
MIPS. The number of comparisons is thus T = 243 x 107=26,001. Consequently, with an upper threshold of 1% on the P value, we would expect
at least 260 false positives!

It is also usual to perform a minus log conversion of the E value, which gives the ‘significance score’.

51‘9:_[0910(Eval)-
The sig score gives an intuitive perception of the exceptionality of the intersection between sets: a negative significance indicates that an
intersection of at least that size is likely to occur by chance, a positive value means that it is significant.
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27| Click on the GO button. After a few seconds, a result page appears with links pointing toward two alternative output
formats: tab-delimited text file or hypertext markup language (HTML) page (Fig. 4). The tab-delimited text file can be
downloaded to your computer and then imported to various applications for further analysis. The HTML format is useful for
inspecting and handling the result on the Web browser. The NeAT HTML tables support dynamic reordering of the rows according
to the values of any column, by clicking on the header of this column. The first line of the result file indicates the parameters
used for the analysis and documents the content of the columns. This is followed by a result table, where each line reports the
comparison between one MCL cluster and one complex.

Network comparison

28| In this section, we will use the tool compare-graphs to compare the interactions annotated for the yeast Saccharomyces
cerevisiae in the STRING database with the synthetic lethality relationships obtained from the BioGRID database. Download
on your computer the file Saccharomyces_cerevisiae_biogrid_synthetic_lethality_names.tab from the data repository

(see EQUIPMENT).

29| In the NeAT menu of the left panel, click on the link Network comparison. For our study case, select as Query graph the
previously downloaded file yeast_string_database_graph_names_undirected.tab, and as Reference graph the file Saccharomyces_
cerevisiae_biogrid_synthetic_lethality_names.tab, by clicking on the corresponding Browse. .. buttons. For each file, you need to
specify the columns containing source and target nodes, respectively. In both files, the first column contains the source and
second column the target. We thus just have to fill the weight column for the query graph (weight = 3) as done previously. The
reference network (synthetic lethality) does not contain edge weights.

30| Since in our example, only the edges of the STRING network are weighted, select weight/label of the query for the option
Weight/label on the edges of the output graph.

; compare-classes -v 1 -r /home/rsat/rsa-tools/public_html/tmp/compare-ref-classes.4BlvXAMVHb -q /home/rsat/rsa-tools/public_html/tmp/compare-query-classes.rw4 INKWORT -return rank,
occ,proba -1th Q 1 -1th R 1 -1th QR 1 -1lth sig 0 -sort sig

; Input files

/home/rsat/rsa-tools/public_html/tmp/compare-query-classes.rw4 INKWORT

/home/rsat/rsa-tools/public_html/tmp/compare-ref-classes.4BlvXAMVHb

query_classes
G ref_classes
; Query classes

(nq) 106
; Reference classes (nr) 243
i Elements in ref classes (nr) 1121
; Elements in query classes (ng) 1240
; Elements in query+ref classes 1861
; Population size 1861
; Comparisons (rn*ng) 25758
; Multi-testing correction (nc) 25758
; Sort key sig
; Thresholds lower upper
; 1) 1 NA
OR 1 NA
R 1 NA
i sig 0 NA
; Column contents
1 rank Rank of the comparison
2 ref Name of the first class (called class Q hereafter)
3 query Name of the second class (called class R hereafter)
4 R Number of elements in class R
5 Q Number of elements in class Q
6 OR Number of elements found in the intersecion between classes R and Q
7 QR Number of elements found in the union of classes R and Q. This is R or Q.
8 R1Q Number of elements found in class R but not class Q
9 Q!R Number of elements found in the class Q but not in class R
10 1QIR Number of elements of the population (P) found neither in class Q nor in the class R
11 P_val P-value of the intersection, calculated witht he hypergeometric function. Pval = P(X >= OR).
12 E_val E-value of the intersection. E_val = P_val * nb_tests
13 sig Significance of the intersection. sig = -logl0(E_val)
#rank ref query R Q OR QVR RIQ QIR 10IR  P_val E val sig
1 Cytoplasmic-ribosomes cl_1 138 151 123 166 15 28 1695 4.00E-146 1.00E-141 140.99
cytoplasmic-ribosomal-large-scl_1 81 151 74 158 7 77 1703 7.30E-81 1.90E-76 75.73
3 26S-proteasome cl_s 36 36 32 40 4 4 1821 2.80E-60 7.10E-56 55.15
4 cytoplasmic-ribosomal-small-gcl_1 57 151 49 159 8 102 1702 1.10E-48 2.80E-44 43.56
5 19-228-regulator cl_8 18 36 18 36 0 18 1825 8.80E-34 2.30E-29 28.64
6 Pre-replication-complex cl_17 14 16 14 16 0 2 1845 1.80E-33 4.70E-29 28.32
7 Replication-complexes cl_17 49 16 16 49 33 0 1812 3.60E-27 9.30E-23 22.03
8 Replication-complex cl_17 19 16 13 22 6 3 1839 3.00E-26 7.80E-22 21.11
9 H+-transporting-ATPase-vacuolcl_9 15 34 14 35 1 20 1826 3.20E-25 8.20E-21 20.09
10 20S-proteasome cl_s 15 36 14 37 1 22 1824 8.60E-25 2.20E-20 19.65
11 FO-F1-ATP-synthase cl_9 15 34 13 36 2 21 1825 1.90E-22 5.00E-18 17.3
12 Cytochrome-bcl-complex cl_38 9 7 7 9 2 0 1852 2.40E-18 6.10E-14 13.21
13 Oligosaccharyltransferase cl_21 9 13 8 14 1 5 1847 3.30E-18 8.50E-14 13.07
14 Replication-initiation-complecl_17 8 16 8 16 0 8 1845 3.70E-18 9.40E-14 13.03
15 Replication-fork-complexes cl_10 30 27 13 44 17 14 1817 4.30E-18 1.10E-13 12.95
16 Anaphase-promoting-complex  cl_4 11 58 11 58 0 47 1803 1.00E-17 2.60E-13 12.58
17 Cytochrome-c-oxidase cl_27 8 10 7 11 1 3 1850 6.30E-17 1.60E-12 11.79
18 RNA-polymerase-I cl 2 14 149 14 149 0 135 1712 2.50E-16 6.40E-12 11.19
19 Cdc28p-complexes cl 4 10 58 10 58 0 48 1803 3.90E-16 1.00E-11 11

Figure 4 | Most significant associations between MCL clusters versus MIPS complexes. This figure shows only the top of the table returned by the program
compare-classes. Each row represents the comparison between one complex (reference) and one MCL cluster (query).
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31| Several alternatives are possible for the option Output type, corresponding to various combinations of the query and refer-
ence graphs (union and difference). The arcs of the resulting graph will be labeled and colored differently depending on whether
they belong to the query graph only, the reference graph only or to their intersection. For the study case, to only return the
arcs that are in common to both graphs, select Intersection as Output type.

32| If you want to visualize the resulting network with yEd or Cytoscape, select GML format as Output format.

33| In case your graph is directed, check the option Graphs must be considered as directed, so that an edge from node A to
node B is considered as distinct from an edge from B to A. In our study case, protein interactions are undirected, so this option
must remain unchecked.

34| Finally, you can indicate whether or not your graph may admit self-loops (edges having the same node as source and
target). In our study case (synthetic lethality versus STRING interactions), the graph is undirected and has no self-loop.

A CRITICAL STEP The intersection statistics will be strongly affected by the nature of the graph (directed or not, with or without
self-loops), as described in Box 2.

35| When this form is filled, click on the GO button. The computation of the comparison may take some time (between 10 s
and a few minutes) depending on the size of the input networks.

36| The result page (Fig. 5a) shows statistics about the sizes of the input graphs, their union, intersection and differences
(see Box 2) and a link pointing to a separate file corresponding to the comparison network. To save this network on your com-
puter, right click on its URL and select Save link as.... The resulting network can be visualized as described above (Fig. 5b).

37| The ‘Next step’ box permits to use the network resulting from compare-graphs as input for some other NeAT programs
(clustering, display, randomization, etc.).

Negative controls

38| To check that the results described previously were not obtained by chance only, we can run random negative controls by
applying the processes described previously to random graphs. The program random-graph can be used to generate random
graphs according to various random models. Click on the link Network randomization in the left menu. Upload a graph (e.g.,
veast_string_database_graph_names_undirected.tab) and select the output format of your choice.

A CRITICAL STEP The most important parameter is the choice of the type of randomization. In general, we would recommend to
select the option node degree conservation that consists in shuffling the edges, each node keeping the same number of neighbors
as in the original graph. This procedure is specially designed to avoid duplicating edges, unless you check the option ‘Allow
duplicated edges’ (this should usually not be done). Another randomization type is the node degree distribution conservation
where the global distribution of the node degree is conserved but each node presents a different degree than in the original
graph. Finally, the program also supports Erdos-Renyi randomization, where edges are distributed between pairs of nodes with
equal probability.

39| To obtain the randomized network, click on the GO button.

40| You can now apply to this randomized network all the steps described in the previous paragraphs (clustering, subnetwork
extraction, comparison with reference graph, etc.). In principle, the results obtained with the randomized graph should be
clearly less convincing than those obtained with the real STRING interaction network.

Path finding

41| Given an interaction network (e.g., the STRING database network) and two query proteins, we can ask which intermediate
proteins connect them. This question can be answered using Pathfinder, a tool that retrieves the k-shortest paths in a network
for given source and target nodes (see Box 3 for more information on k-shortest paths finding). The STRING network with
converted weights is available in the data repository (see EQUIPMENT), in the file string_database_graph_converted_weights.tab.
Download this file to your computer.

42| In the NeAT main menu, click on the menu Path finding, then on k shortest path finding to open the Pathfinder query

form. Upload your network by clicking on the Browse. .. button in the section Network. Alternatively, you can copy-paste
the network into the text field. For the case you would like to store this network on the server for later use, click the
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: Job done

graph_R /home/ rsat/rsa-tools/public_html/ tnp/compare-graphs- reference-input-graph. SnUUo27419
graph_Q /home/rsat/rsa-tools/public_html/ tmp/compare-graphs-query-input-graph.DhwEV27418

: INFO Comparison statistics

© Counts of nodes and arcs

Graph Nodes Arcs
R

352 9413
Q 1240 11027
QuR 2989 203602
Q"R 603

138
Q'R 637 10889
RIQ 1749 9275

Description
Reference graph
Query graph

Union

Intersection

Query not reference
Reference not query

. Significance of the number of arcs at the intersection

Symbol Value Description

N 2989

M 4465566 Max number of arcs in the union
E@"R) 23.24 Expected arcs in the intersection
Observed arcs in the intersection
Percentage of query arcs
Percentage of reference arcs
Jac_sim 0.0068 Jaccard coefficient of similarity

Q"R 138
perc Q 1.25
perc_R 1.47

Nodes in the union

Pval 1.4e-59 P-value of the intersection

: Job started 2007_12_17.151234
2007_12_17.151240

Formula

M = N*(N-1)/2
E@*R) = Q*R/M

perc_Q = 160*Q*R/Q
perc_R = 100%0*R/R
Jac_sim = Q"R/ (QvR)
Pval=P(X >= Q*R)

intersection size divided by union

; compare-graphs -v 1 -in_format_Q tab -in_format_R tab -out_format gml -outwsight 0::R -return umion -scol_Q 1 -tcol_Q 2 -scol R 1 -tcol_R 2 -Q /home/rsat/rsa-tools/public_
o Input files

The results is available at the following URL hitp://rsat.scmbb. ulb. ac.be/rsat//tmp/compare-graphs-out. CPbms27433
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Figure 5 | Result of the fusion between the BioGRID synthetic lethality data set (reference graph) and the yeast-protein interaction data set annotated in the
STRING database (query graph). (a) Comparison statistics (see Box 2). (b) Drawing of the union graph (with yEd). Color code: red edges, false positives (edges
found in the query graph but not in the reference graph); blue edges, false negatives (edges found in the reference graph but not in the query); green edges,

true positives (edges present in both networks, in this case, only 138 among the ~20,000).
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BOX 3 | k-SHORTEST PATHS FINDING IN WEIGHTED NETWORKS

Path finding attempts to find the shortest path between a given start node and a given end node in a network (graph). If several such paths
exist, they should be all returned as equally valid solutions. Sometimes, we are not only interested in the shortest path, but also in the second
shortest, third shortest or, in general, the k-shortest paths. The task of a k-shortest paths algorithm is to enumerate all paths up to the requested
rank (k) in the order of their length. This is accomplished for example by the recursive enumeration algorithm3” or by Eppstein’s algorithm32.
Often, the edges in biological networks are not equally relevant. For example, experimentally validated protein-protein interactions are more
trustable than those observed in only one high-throughput experiment. To express such differential reliabilities, a higher cost (weight) can be
placed on edges representing less trustable protein-protein interactions. When costs, or weights, have been set on the nodes or edges of a
network, we no longer search for the shortest but for the lightest (that is less costly) path. Consequently, the k-shortest paths algorithm returns
paths ranked according to their weight with the lightest path on top.

The weights have to be selected in a relevant way for the biological network of interest. The choice of a relevant weighting criterion clearly
depends on your experience about this network and about the quality of the data available.

In a previous study?%?2, we evaluated the accuracy of k-shortest path finding for inferring metabolic pathways from compound/reaction
networks, and showed that a graph where each node is weighted according to its degree (number of incoming + outgoing edges) achieves an
accuracy of 83%.

In our study case with the yeast interaction network, we will use the scores provided by STRING as weights. In this case, the score assigned to
an edge is a measurement for the reliability of the protein-protein interaction represented by this edge. In contrast, for Pathfinder, an edge
weight is the cost of this edge. Therefore, we converted the scores into costs using the following formula:

1,000
W. = o

where S, is the score of an edge as defined in STRING (from 0 to 1,000), and W, is the weight assigned to that edge for path finding.

Store network on server check box. This will allow you to perform further analyses on the same network, without having to
transfer it repeatedly from your computer to the server.

43| Enter the IDs of the source and target nodes. For this study case, type RAS2 in the Source nodes field, and TECI into the
Target nodes field.

44| For the option Weighting scheme, select ‘as given in input graph’. This will specify that weights should be taken from the
third column of the input file and not calculated according to a predefined weighting scheme.

45| The result can be exported in various formats, depending on what you want to do with the resulting paths. (i) If you want
to display the path in a tabular format, select Table as Output format. (ii) The result can also be exported to GML format, to
visualize the resulting paths as a subset of the original network (this can be done with visualization Cytoscape or yEd). For this,
select Graph as Output format, set the Graph format to GML format and set the Graph output type to paths unified into one
graph.

46| Click GO to start the computation.
? TROUBLESHOOTING

47| The result will be displayed according to the option chosen at Step 45. (i) Output format ‘Table’. After a few seconds (or
minutes, depending on the size of your graph), the results should appear in the form of two links. The first link points to the
table of paths in simple text format, the second to the same table in HTML format (Fig. 6). If the checkbox Store network on
server has been clicked, Pathfinder returns the identifier of the submitted network in addition. Submitting this identifier instead
of the network itself speeds up the next path-finding job performed on it, because the previously transferred network is used,
thereby avoiding to upload it again. (ii) The result form will contain a link to the resulting network in a GML file, which can be
downloaded on your computer and displayed with Cytoscape or yEd. This link is followed by a ‘Next steps’ box, which will permit
you to fetch the result network into another NeAT tool.

The timings listed below depend on the server load (the number of jobs currently running on the server). However, for the study
case we expect the tools to finish within 5 min.

Compare graph: <30 s; MCL: <20 s; graph-get-clusters: <40 s; display-graph: <1 min; compare-classes: <20 s; Pathfinder:
<1 min; Fuzzy clustering: <2 min

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 1.
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; Experiment exp_0
; Pathfinding results
; Date=Thu Jun 26 16:03:53 CEST 2008

; INPUT
; Source=RAS2
; Target=TEC1

PROTOCOL |

; Graph=Pathfinder_tmpGraph_d597cd86-3095-475f-99e7-d70a542d072a.tab

; Undirected=true

; Metabolic standard format=false
; REA format=false

; Temporary directory=Temp
; CONFIGURATION

; Algorithm=rea

; Weight Policy=

; Weights given on arcs=true
; Maximal weight=1000000

; Maximal length=1000000

; Minimal length=0

; Exclusion attribute=ReferencedObject.PublicId

; Rank=5

; REA timeout=10

7 EXPLANATION OF COLUMNS

; Start node=given start node identifier
; End node=given end node identifier

; K=path index

; Rank=rank of path (paths having same distance have the same rank, though their step number might differ)
; Distance=weight of path (sum of edge weights)

; Steps=number of nodes in path

; Path=sequence of nodes from start to end node that forms the path

#start node end node path index

RAS2 TEC1 1
RAS2 TEC1 2
RAS2 TEC1 3
RAS2 TEC1 4
RAS2 TEC1 5
RAS2 TEC1 6
RAS2 TEC1 7
RAS2 TEC1 8
RAS2 TEC1 9
RAS2 TEC1 10
RAS2 TEC1 11
RAS2 TEC1 12
RAS2 TEC1 13
RAS2 TEC1 14
RAS2 TEC1 15
RAS2 TEC1 16
RAS2 TEC1 17
RAS2 TEC1 18
RAS2 TEC1 19
RAS2 TEC1 20
RAS2 TEC1 21
RAS2 TEC1 22
RAS2 TEC1 23
RAS2 TEC1 24
RAS2 TEC1 25
RAS2 TEC1 26
RAS2 TEC1 27
RAS2 TEC1 28
RAS2 TEC1 29
RAS2 TEC1 30
RAS2 TEC1 31
RAS2 TEC1 32
RAS2 TEC1 85}
RAS2 TEC1 34

rank distance steps path
1 6.25 6 RAS2->CDC42->STE20->FUS3->STE12->TEC1
2 7D 7 RAS2->CDC42->STE20->STE11->FUS3->STE12->TEC1
2 7o 7 RAS2->CDC42->SHO1->STE20->FUS3->STE12->TEC1
2 25, 7 RAS2->CDC42->STE20->FUS3->DIG1->STE12->TEC1
2 7B 7 RAS2->CDC42->BEM1->STE20->FUS3->STE12->TEC1
2 70> 7 RAS2->CDC42->STE20->STE5->FUS3->STE12->TEC1
2 P25 7 RAS2->CDC42->STE20->FUS3->DIG2->STE12->TEC1
2 70> 7 RAS2->CDC42->STE20->STE7->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE5->STE7->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->BEM1->STE20->STE11->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->STE11->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE5->STE11->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->SHO1->STE20->FUS3->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->BEM1->STE20->STE7->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE5->FUS3->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->FUS3->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE11->STE7->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE11->STE5->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->KSS1->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->SHO1->STE20->STE5->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->BEM1->STE20->FUS3->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE11->FUS3->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->FUS3->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->BEM1->STE20->FUS3->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->FUS3->DIG1->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->FUS3->DIG2->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->SHO1->STE20->STE11->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->KSS1->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE7->STE5->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE5->FUS3->DIG2->STE12->TEC1
9 8.75 8 RAS2->CDC42->SHO1->STE20->STE7->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->STE20->STE11->FUS3->DIG1->STE12->TEC1
9 8.75 8 RAS2->CDC42->BEM1->STE20->STE5->FUS3->STE12->TEC1
9 8.75 8 RAS2->CDC42->SHO1->STE20->FUS3->DIG2->STE12->TEC1

Figure 6 | Result obtained with Pathfinder upon execution of protocol with the study case. The table lists the paths found between RAS2 (source node) and
TEC1 (target node), ranked by increasing value of weight (distance). RAS2 and TEC1 are the start and end node of the filamentous growth pathway in yeast.

TABLE 1 | Troubleshooting table.

Step Problem Possible reason Solution
8 After a few minutes, I still do not If you submitted a heavy task, the For heavy tasks, it is preferable either to install the
have any answer and the browser displays processing may exceed 5 min. After stand-alone version of the command-Lline tools on

“Server is not responding”

17 No graph layout after having loaded a
GML file into yEd or Cytoscape

that delay, Internet browser programs  your machine or to write a client script for the RSAT
stop waiting for the server and display Web services
the error message

Another possibility (if the task you
submitted is not heavy) is that there is a
problem with your Internet connection

When a graph is loaded in yEd or In yEd: select Layout from the menu, then select
CytoScape, it is initially displayed with ~ the submenu Organic and choose the option
a trivial layout (all nodes on a diagonal) Classic, then click OK

In Cytoscape: select Layout from the menu, then
select the submenu yFiles and choose Organic

Both editors offer other layouts that you may try

(continued)
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TABLE 1 | Troubleshooting table (continued).

Step Problem Possible reason Solution

22 You obtain the message: “Error Cluster and graph files do not correspond Check that the clusters correspond to the graph. If
Incongruence between graph and to the same network, or the specified  so, check the format of your graph file is the one
cluster files” format of the graph is not correct you entered in the relevant field
The low-resolution heatmap does not The image is scaled so it fits on the Click on the image to zoom. You may inspect the
display properly window whole map by using the scrolling bar

46 You obtain the message: “PATHFINDER You provided seed node identifiers that Check the spelling of your seed node identifiers
ERROR: One of your seed nodes is not do not match any of the node identifiers
part of the input graph” of the input graph

In general, all tools require an exact match between
input node identifiers and those of nodes in the
network

ANTICIPATED RESULTS

Clustering

Figure 2 shows the results that should be obtained by applying the MCL graph clustering algorithm on the STRING database
interaction network. Each cluster is highlighted with a specific color. Figure 2a only displays intracluster edges, so that each
cluster appears as a separate component. This representation highlights the intracluster structure and edge density, and could
give indication about possible improvement of the clusters by further subdivision. For example, the top-left cluster seems to
be composed of several various connected regions, which could be explored in more detail, taking into account some biological
knowledge. On Figure 2b, both intra- and interclusters are displayed. Intracluster edges are highlighted by cluster-specific
colors, whereas intercluster edges are displayed in black, thereby revealing the interactions that were discarded during

the clustering procedure. These two representations thus provide complementary indication for the interpretation of the
clustering result.

The heatmap in Figure 3 represents a section of the node-cluster membership matrix, with cells colored according to the
membership degree (the darker the cell, the higher the membership value). Within each cell, the membership degree values are
displayed, indicating how strongly each node (row) is connected to each cluster (column). This strength (node-cluster
membership) is defined as the sum of weights of the edges connecting the considered node to the considered cluster, divided by
the sum of weights of all edges starting from this node. The figure shows only a fragment of the table, but it already appears
that some genes have similar membership profiles, thereby suggesting their involvement in common functions. This is the case
of the genes LPD1, PDA1 and PY(1, which are involved in pyruvate metabolism.

Figure 4 shows the results of the comparison between the dense clusters of the STRING graph and the complexes annotated
in the MIPS database. The header gives a short explanation for the content of each column of the result table. In this case,
results are sorted by decreasing values of the hypergeometric significance (last column) calculated as described in Box 2. Each
row describes the comparison between one MCL cluster and one MIPS complex. For example, the first row compares the MCL clus-
ter ‘cl_2’, which contains 151 proteins, with a set of 138 proteins involved in cytoplasmic ribosomes. The intersection contains
123 proteins, which represents a very high fraction of both the MCL cluster, and the annotated complex. The probability to
observe such an intersection by chance is 4E-146. The E value, obtained with the correction for multitesting, indicates that the
number of false positives expected with such a P value would be 1E-141. In other terms, the correspondence between this MCL
cluster and the cytoplasmic ribosome is too high to be explained by chance.

Network comparison

Figure 5a shows the statistics of comparison between the STRING ‘database’ network and the BioGRID synthetic lethality data set.
The ‘synthetic lethality” network used as reference contains 2,352 proteins linked by 9,413 edges, and the query graph contained
1,240 nodes and 11,027 edges. The intersection between those graphs is apparently weak: 138 edges only. The Jaccard coefficient
indicates that this intersection represents no >0.68% of the union. However, the number of edges expected by chance at the
intersection is even smaller: E(Q*R) = 23.24. The hypergeometric P value (Box 2) indicates the probability to observe at least
138 edges at the intersection when 23.24 are expected by chance. In this study case, we observe that even with no >0.68% of
edges at the intersection, the P value is very low (1.4E—59). In other terms, the number of edges at the intersection is too much
high to be explained by chance, and is more likely to result from the biological relevance of both datasets.

Pathfinder
The known signal transduction path connecting RAS2 and TEC1 consists of the following steps!®:
RAS2 - CDC42 - STE20 - STE11 - STE7 - KSS1 - DIG1/2 - TEC1
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Pathfinder reports the following path of first rank (the matching parts are underlined, and the nonseed matching part are high-

lighted in bold):
RAS2 - CDC42 - STE20 - FUS3 - STE12 - TEC1

This path connects STE20 to TEC1 via FUS3 and STE12, bypassing STE11, STE7, KSS1 and DIG1/2.
Among the paths of length 8 (third rank paths), we find paths closer to the annotated pathway, such as

RAS2 - CDC42 - STE20 - STE11 - FUS3 - DIG1 - STE12 - TEC1

Scott and colleagues applied their path-finding algorithm to another yeast protein-protein interaction network of similar size
(4,500 nodes and 14,500 edges) taken from MIPS. For RAS2 and TEC1, they obtain the following as best path of length 8:

RAS2 - CDC25 - HSP82 - STE11 - STE5 - STE7 - KSS1 - TEC1

Although Pathfinder has not been designed in particular for protein interaction networks, it can be used to predict signal
transduction pathways if appropriate weights have been set on the network under investigation. The accuracy of the prediction
depends also on the data quality. For example, the STRING interaction network does not contain any edge between DIG2/DIG1
and TEC1, making it impossible to reach a prediction accuracy of 100%. When predicting pathways from real-world interaction
networks, one must always keep in mind that these data might be incomplete or contain false positive interactions.
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7 Discussion

7.1 Summary

7.1.1 Path finding in RPAIR networks

A path finding tool was developed, which predicts metabolic pathways in KEGG LIGAND
and KEGG RPAIR networks and which is integrated into NeAT.

The evaluation of path finding in RPAIR networks showed that RPAIR annotation, com-
bined with a weight policy that penalizes hub compounds, yields a higher accuracy than either
RPAIR annotation or weight policy alone. This is a step forward with respect to the previous
results by Didier Croes, whose work was the starting point for this thesis.

7.1.2 Multiple-end pathway prediction by subgraph extraction

The evaluation of several multiple-end pathway prediction approaches showed that a combi-
nation of a random walk-based (kWalks) with a shortest-paths based (Takahashi-Matsuyama)
approach reaches the highest overall accuracy. In addition, kWalks can discover weights. In
the absence of a good weight policy, these weights increase pathway prediction accuracy con-
siderably. This can be helpful when pathway prediction is applied to biological networks other
than metabolic networks, for which a good weight policy is not yet known.

The subgraph extraction approaches are publicly available within the NeAT tool "Pathway
extraction". This tool accepts compounds as well as reactions, reactant pairs, EC numbers,
enzymes or genes as seeds. The user can submit custom groups of seeds or select a pre-
defined seed node grouping strategy (for instance, if enzymes are provided as seeds, their
associated reactions can be grouped according to their EC numbers). In addition, the tool
offers networks from the major metabolic databases KEGG and MetaCyc and maps reference
maps or pathways from these databases onto the predicted pathway. Last but not least, the tool
can take custom networks and custom weights as input.

7.1.3 Application to microarray data set

Multiple-end pathway prediction was applied to a microarray data set that measured differ-
ential gene expression in the presence of each of 20 different compounds as sole nitrogen
source with respect to urea as reference nitrogen source. Given the top five differentially ex-
pressed enzyme-coding genes for each condition, multiple-end pathway prediction suggested
pathways that are up- or down-regulated in the presence of a specific nitrogen source.
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For the good nitrogen source aspartate, which enables quick growth, the down-regulation of
purine and proline degradation was predicted as well as the up-regulation of glycerol biosyn-
thesis.

For leucine, which clusters with the bad nitrogen sources, but is stated to support quicker
growth in [63], proline and purine degradation are predicted to be down-regulated. Proline
degradation is not down-regulated for any other of the bad nitrogen sources, whereas purine
degradation is also down-regulated in the presence of methionine and isoleucine. The pathway
predicted for the up-regulated genes contains a part of the tyrosine degradation pathway.

For the intermediate nitrogen source phenylalanine, the purine and allantoin degradation
pathways as well as the glyoxylate cycle are predicted to be down-regulated, whereas a part
of the tyrosine/phenylalanine degradation pathway is predicted to be up-regulated.

In general, down-regulated pathways are very similar for good, intermediate and bad ni-
trogen sources and may rather be specific to urea (the reference nitrogen source) than the
investigated nitrogen source. Up-regulated pathways are more variable and include storage
compound synthesis as well as degradation pathways for the given nitrogen source in some
cases.

Pathway prediction faced several problems mostly related to gene-reaction mapping. Re-
sults could sometimes not be obtained from a yeast-specific network constructed from KEGG
PATHWAY, highlighting the importance of the mapping problem. The prediction results have
therefore to be considered as preliminary.

7.1.4 Stoichiometric versus non-stoichiometric pathway
prediction

The question can be raised whether or not metabolic pathways should be stoichiometrically
balanced. Stoichiometric pathway prediction is recommended if the metabolic network of an
organism (or a set of organisms) is well known. In cases where the metabolic network may be
incomplete, non-stoichiometric approaches are more appropriate, since they are more robust
with respect to missing reactions.

7.2 Strengths of pathway prediction

The multiple-end pathway prediction approaches developed during this thesis have several
strengths, some of them unique (e.g. the treatment of seed sets and the acceptance of both
reactions and compounds):

e Pathway prediction by subgraph extraction is a generic approach that can be applied to
any biological network.

e [t can handle large networks (~ 6,000 reactions).

e [t does not require any input apart from the metabolic network, the weight policy and
the seed nodes. If kWalks relevances are used as weights, acceptable prediction accu-
racies can be reached even without an appropriate weight policy. In particular, external

160



compounds do not need to be specified and it is not assumed that metabolism is at steady
state.

e The prediction approach can discover unknown pathways consisting of known compo-
nents.

e Pathway prediction can be fine-tuned to favor certain nodes. For instance, in a generic
metabolic network, i.e. a network consisting of all reactions and compounds present
in a metabolic database, reactions known to occur in certain organisms might receive
a weight much lower than other reactions, to favor the extraction of organism-specific
subgraphs. Similarly, results from a high-throughput experiment can be incorporated
by assigning a node weight that represents a score obtained from the experiment (e.g. a
function of the p-value of differential expression of the gene associated to the node).

e Sets of seed nodes can be specified to reflect AND/OR relationships between seed nodes.
An AND relationship holds between seed node sets, whereas an inclusive OR relation-
ship exists between the members of a seed node set.

e The web application allows to predict pathways from networks constructed from the
two major metabolic databases KEGG and MetaCyc.

e Both, compounds and reactions can be provided as seeds. Thus, the web application
supports compounds, reactions, reactant pairs, EC numbers or genes/enzymes as seed
nodes and handles the required association of these seeds to reactions, reactant pairs and
compounds.

e For metabolic networks from MetaCyc or KEGG, the web application maps the pre-
dicted pathway to known pathways from MetaCyc or KEGG respectively.

7.3 Limitations of pathway prediction

When using the pathway prediction approaches presented in this thesis, one should be aware
of their limitations:

e Data quality.
As for any other prediction method, prediction accuracy depends on the quality of the
data. If reactions or compounds are absent in the source database, pathways contain-
ing them cannot be predicted. If associations of genes to reactions are imprecise, the
predicted pathway will be inaccurate.

e Cycles and spirals.
Cyclic and spiral-shaped pathways such as TCA cycle and fatty acid biosynthesis can
only be partly predicted in most cases. Two-end path finding relies on the enumeration
of the K-shortest paths. Paths by definition do not contain cycles, and closed paths
are not enumerated. Pathways composed of several paths of equal weight may contain
cycles, however.
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Likewise, most multiple-end pathway prediction algorithms tested in this thesis search
for the minimum weight tree connecting the seed nodes. The minimum weight tree
would no longer be of minimal weight if it contained an additional edge to close a
cycle. As in two-end path finding, a pathway may be cyclic if it contains several paths
having the same weight between two seed nodes.

KWalks is a special case, because in contrast to the shortest-paths based algorithms,
it does not seek to minimize the weight of a subgraph, but instead to maximize its
relevance. With the kWalks algorithm, a subgraph is built by adding the most relevant
of the remaining edges at each step and checking whether the pathway is connected.
Thus, cycles may be obtained in some cases.

Most parsimonious pathway assumption.

Path finding makes the assumption that pathways are as short (parsimonious) as bio-
chemically possible. It may be argued that this makes sense for the cell, since the syn-
thesis of an enzyme is costly. In many cases, this assumption indeed results in accurate
predictions. However, not all pathways are designed to synthesize a product or degrade
a compound with the minimal number of enzymatic steps. For example, the TCA cycle
has not been optimized to consist of the smallest possible number of enzymes but to
produce energy and precursors for some metabolic pathways (e.g. amino acid biosyn-
thesis). Pathway prediction with multiple seeds alleviates this problem, as it can take
intermediate reaction steps into account.

Central metabolism.

From the evaluations performed during this thesis, it emerged that pathway prediction
is particularly weak for central pathways such as glycolysis, which are highly intercon-
nected and where many different alternatives exist. The criteria employed by the path
finding approach presented in this work and by other non-stoichiometric approaches
(e.g. [138, 18]) are currently not sufficient to distinguish between valid and invalid cen-
tral pathways. Multiple-seed pathway prediction alleviates the problem by allowing the
incorporation of more information. Still, a high proportion of a central pathway needs
to be provided (as seed nodes) in order to correctly predict it.

Generic compounds and stereoisomers

KEGG and MetaCyc contain generic compounds, e.g. compounds such as "alcohol" or
"an amino acid". Generic compounds serve as substrates and products of generic reac-
tions (i.e. reactions carried out by broad-specificity enzymes) and organize compounds
in a hierarchy. In this tree-shaped hierarchy, compounds with specific structures form
leaves at the bottom, which are merged into generic parent compound classes with in-
creasing broadness. For instance, tryptophan (leave) is an aromatic amino acid (generic
compound), which is an amino acid (higher level generic compound). Stereoisomers in-
troduce a new level of detail at the bottom of this compound hierarchy. For instance, D-
and L-tryptophan, two leaves in the compound tree, are the children of the tryptophan
compound class. Ideally, pathway prediction should navigate the compound hierarchy
for each compound to find its most specific representative in the hierarchy, but this has
not been implemented for the present prediction approach.



e Polymeric reactions and compounds
The networks constructed during this work do not contain polymeric reactions, because
they need an annotation effort to distinguish between substrate and product (which are
often identical as in the case of KEGG reaction R01790 involving starch). Polymeric
compounds such as DNA or RNA are also excluded to simplify the prediction task.
Therefore, pathways containing polymeric reactions or compounds cannot be predicted.

e Stoichiometries.
Pathways are not stoichiometrically balanced. The implications of this have been dis-
cussed in detail in chapter 5.

e Irreversible reactions.
In general, the direction of a pathway can only be predicted if irreversible reactions are
preserved during the construction of the metabolic graph. The generic metabolic net-
works offered by NeAT pathway prediction tools do not contain irreversible reactions.
However, custom graphs containing irreversible reactions can be uploaded by the user.
However, for multiple-seed pathway prediction, it is possible that a predicted pathway
contains irreversible reactions of opposite directions.

e Reaction group treatment.
If genes or EC numbers are associated to several reactions, it is not clear how many of
them are contributed to the pathway. As explained in the Introduction (section 1.3.3),
this ambiguity is due mainly to two reasons: On the one hand, enzymes may contain
several catalytic sites and thus be associated to several EC numbers. On the other hand,
one EC number may comprise several reactions. Such EC numbers are often assigned
to broad-specificity enzymes, which are enzymes that are not specific to one substrate.
For instance, EC number 1.1.1.1 describes the conversion of an alcohol to a ketone
and is associated to the broad-specificity enzyme alcohol dehydrogenase. From the
many reactions associated to this EC number, only a sub-set may be relevant for the
pathway to be predicted. To deal with these ambiguities, the pathway prediction web
tool allows to group reactions associated to a gene according to their EC numbers. Thus,
an AND relationship exists between the reactions in different EC number groups and an
OR relationship exists between the reactions within one EC number group. However,
this grouping does not solve the problem entirely, as there are some cases where one
EC number contributes more than one of its reactions to the pathway (e.g. histidine
biosynthesis) or where only one of two EC numbers of an enzyme participates in the
pathway (lysine biosynthesis). In section 9.1, postprocessing is discussed as a strategy
to deal with this problem.

7.4 Alternative prediction approaches
As seen in the introduction, many different metabolic pathway prediction approaches exist.

The multiple-end pathway prediction approach presented in this thesis is a large-scale ap-
proach, which is not overly sensitive to noisy data (evaluation was performed in low-quality
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networks), which does not require any input other than the metabolic network, a weight policy
and seed nodes, which is flexible (accepts compounds and reactions as seeds, can be applied to
any network), but which on average does not reach high prediction accuracies (i.e. accuracies
above 90%).

A few steps can be taken to increase the accuracy of multiple-end pathway prediction (see
section 7.6), but it has inherent limitations: It does not take into account enzyme kinetics, does
not explicitly trace atoms and does not consider stoichiometry.

In the following, each of these shortcomings is discussed in more detail.

7.4.1 Enzyme kinetics

Detailed models of metabolism (e.g. [118]) explicitly take into account the (often non-linear)
kinetics of enzymes using various approximation techniques ([70]). Currently, kinetic data on
a large number of enzymes are gathered for model organisms such as S. cerevisiae, which will
allow to extend these models to the genome scale (personal communication J.J. Heijnen). At
this level of description, the metabolic network of the organism needs to be well known, and
the purpose of the model is the accurate prediction of the (wild type or mutant) organism’s
behavior in given conditions instead of the reconstruction of a metabolic network, the discov-
ery of novel pathways or the interpretation of omics data. Thus, detailed models integrating
enzyme kinetics answer different questions about metabolism than pathway prediction does.

7.4.2 Atom tracing

Path finding in the RPAIR graph considers atom flow indirectly, but does not explicitly trace
atoms. Other tools (e.g. [6, 18, 130]) do trace atoms through the compounds of a pathway.
This may result in higher prediction accuracies, as it ensures that atoms from the source indeed
reach the target(s). There is however a drawback to it: It is not straightforward to search paths
between reactions. Indeed, none of the tools relying on atom tracing accepts reactions as
input (see tables 1.6 and 1.7). Given a reaction, it is not clear which of its products is of
interest. The selection of a substrate-product pair with maximal structural similarity (or with
maximal carbon atom transfer) does not help, because often a pair of hub compounds such
as NADP/NADPH displays the highest structural similarity and transfers the largest number
of carbon atoms. What is needed is information on the role of compound pairs in a reaction,
which is provided by the RPAIR database. For instance, the pair NADP/NADPH is classified
as "cofac". It is an open question whether carbon atom transfer rules (a maximal number of
carbon atoms from the source should arrive at the target) can be combined with reactant pair
roles and whether this would indeed increase the accuracy of path finding between reactions.

7.4.3 Stoichiometry

Stoichiometric versus non-stoichiometric pathway prediction was already discussed in chapter
5. It is conceivable to combine both approaches. For instance, first all EMs could be enumer-
ated that contain one of the seeds of interest. Selected EMs could then form the input network
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to pathway prediction, which could extract a sub-network containing other compounds of in-
terest. In this case, pathway prediction would act as a zoom to inspect a complex EM solution.
Another way to combine both approaches would be to check whether a pathway predicted by
subgraph extraction is a subgraph of an EM. In this case, EMs would serve as a filter to discard
predicted pathways that do not ensure the net production of a compound of interest.

7.5 Top-down versus bottom-up pathway prediction

In the introduction, pathway prediction was defined as the enumeration of biochemically fea-
sible pathways that connect a set of seeds. This may be referred to as a bottom-up approach:
Given the seed set, a part of the metabolic network is extracted which represents the predicted
pathway.

Another approach, which was mentioned in the introduction (section 1.6.2) starts from the
whole metabolic network and divides it in smaller units that correspond to metabolic mod-
ules (or pathways). For pathway prediction, this top-down approach is less interesting, since
reactions or compounds of interest are not taken into account. However, it allows to define
pathways by defining the partition procedure. For instance, in [68], the network is partitioned
by maximizing the number of intra-module links and minimizing the number of inter-module
links. Many of the modules thus obtained were close to the reference maps listed in KEGG.
Others (especially those from central metabolism) corresponded to a mixture of KEGG refer-
ence maps.

The decomposition algorithm introduced by [60] groups compounds in the order of their
specificity (i.e. number of reactions they are involved in), starting from the most specific
compounds that are linked to the lowest number of reactions and ending with the least specific
compounds such as ATP and ADP. It outputs a tree consisting of a hierarchy of clusters that
reflects the hierarchical organization of metabolic networks as suggested by Ravasz et al.
(see Introduction, section 1.6.2). The least specific compounds (corresponding to the hub
compounds) form clusters at the root of the tree, whereas the most specific compound clusters
form its leaves. When applied to the metabolic network of E. coli, the computed clusters
correspond well to the metabolic pathways as defined by the operons annotated in RegulonDB
[61].

In [62] the metabolic network of E. coli is pruned iteratively by removing highly connected
compounds. Parts of the pruned network corresponded to pathways annotated in EcoCyc.

In the context of metabolic pathway prediction, there are two interesting applications of
network partitioning and pruning.

First, if the modules obtained from the partitioning are close enough to reference metabolic
pathways, then network partitioning would be an interesting way to generate a set of
(organism-specific) reference pathways from metabolic databases where reference pathways
are not available.

Second, a pruned network can speed up pathway prediction, but with the important draw-
back that pathways containing the pruned compounds cannot be predicted, thus prediction
accuracy will be lost.

165



7.6 Tuning pathway prediction

Several strategies can be adopted to increase the accuracy of pathway prediction without mod-
ifying the approach itself:

e Weight. A more sophisticated weight policy can be used, which integrates scores from
omics data.

e Network quality. Pathways can be predicted from a higher-quality network, which does
not contain imbalanced reactions or redundant compound entries (such as C06623 and
C11915 in previous versions of KEGG, [134]). One such network can be obtained from
BioMeta [122].

e Network size. Pathways can be predicted from a smaller network, possibly one that is
specific to a set of organisms.

e Seed node number. The better the pathway of interest is covered by the seed nodes,
the higher will be the prediction accuracy (see section 7.8 on the extend of pathway
coverage by associated enzyme-coding genes).

However, as the evaluations presented in chapter 2 and 3 have shown, reasonable prediction
accuracies can be achieved for huge low-quality networks, a simple weight policy and a small
seed nod number.

In general, the prediction accuracy is highly dependent on the pathway shape and the cover-
age of the pathway by the seed nodes. Thus, the accuracy is pathway-specific, not organism-
specific. In general, pathways are predicted with higher accuracy, if they are

e linear or branched instead of cyclic or spiral-shaped and

e located in the periphery of the metabolic network (i.e. not well interconnected with
other pathways) rather than at its center (where pathways are highly interconnected).

7.7 Condition-specificity of metabolic pathways

Many pathways are only activated in certain conditions. Thus, if one wants to predict a path-
way that is active in an organism in the given conditions, one needs either to integrate gene ex-
pression or similar data into the prediction approach or one needs to work with the condition-
specific metabolic network (which is in turn obtained from gene expression or similar data).

One of the strengths of multiple-end pathway prediction is that it can easily integrate gene
expression data, thus allowing to predict condition-specific pathways.

In a recent article, Shlomi et al. attempt the reconstruction of tissue-specific metabolism
from the human metabolic network by combining flux balance analysis with gene expression
data [151]. Multiple-end pathway prediction from seed genes offers an alternative to the re-
construction of tissue-specific metabolism from gene expression data.
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7.8 Functional association of genes

Many applications of multiple-end pathway prediction involve the prediction of a metabolic
pathway from a set of associated, enzyme-coding genes. This assumes that genes associated by
co-regulation (in operons and regulons), co-occurrence in phylogenetic profiles or associated
in other ways are also functionally related.

Accurate pathway prediction is highly dependent on the number of seed nodes and their
position in the pathway. It is therefore important to consider to what extend seed reactions
obtained from associated genes can cover metabolic pathways.

7.8.1 Co-regulation of genes

In [79], the extend of transcriptional co-regulation of S. cerevisiae enzymes belonging to the
same KEGG map has been measured and a high correlation was found between co-regulation
and co-occurrence in the same KEGG map. The same authors also investigated the position
of transcriptionally regulated enzymes in metabolic pathways and found that gene regulation
often enforces the linearity of a metabolic pathway.

These findings are confirmed by Seshasayee and co-authors, who state that for E. coli,
"linear stretches of the metabolic network are tightly co-regulated" and that moreover a "sub-
stantial proportion (58%) of co-regulated enzyme pairs reside in the same operon" [149].

According to these studies, there is a good chance that seeds obtained from gene expression
data cover a pathway sufficiently well to predict it with high accuracy.

7.8.2 Other types of gene association

Lee et al. investigated gene clustering in 5 eukaryotic genomes and found that genes from
30% to 98% of the KEGG maps (depending on the genome) cluster significantly on the chro-
mosome [100]. Von Mering and coworkers combined several association types in E. coli (co-
occurrence in phylogenetic profiles, conserved gene neighborhood and gene fusion) to obtain
groups of associated enzyme-coding genes [167]. They found that these groups overlap sig-
nificantly with the reference pathways in EcoCyc. They also noted that there is no one-to-one
relationship between gene groups and reference pathways: There are pathways covered by
more than one gene group and gene groups involved in more than one pathway.

These observations support the statement that multiple-end pathway prediction is more ap-
propriate to interpret functionally related genes than simple pathway mapping, because in
contrast to pathway mapping, it does not assume a one-tone correspondence between the gene
group and a metabolic pathway.
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8 Perspectives

8.1 Increase of pathway prediction accuracy

Several suggestions that might increase the prediction accuracy and which were not explored
in this thesis are listed below.

e Thermodynamical constraints. Thermodynamical constraints on reaction directions fil-
ter out thermodynamically infeasible pathways. As explained in section 1.3.2, the di-
rection of a reaction depends on its change in Gibbs free energy. Mavrovouniotis [111]
developed a group contribution method to estimate the standard Gibbs free energy of
the formation of a compound from its structure. He proposed to apply these estimated
standard Gibbs free energies as constraints on reactions for which no information on
reversibility was available from databases. However, the direction of a reaction in phys-
10logical conditions is not only dependent on the standard Gibbs free energy change,
but also on compound concentrations and the temperature (see Introduction, section
1.3.2). Thus, thermodynamical constraints may be difficult to compute from compound
structure alone.

e Combination with EMs. As described in the discussion (section 7.4), a network consist-
ing of selected elementary modes may serve to filter out pathways that do not allow the
net production of a compound of interest.

e Improved weight policy. Node weights could be obtained by a machine learning tech-
nique from the reference pathways. However, the risk of over-fitting is high in this case,
since the number of reference pathways is far below the number of possible weight
policies.

e Explicit tracing of atoms. In this thesis, reactant pair mappings from the RPAIR database
were employed, but atoms were not explicitly traced. As mentioned in the discussion
(section 7.4), relying only on atom tracing makes it hard to predict pathways from seed
reactions. However, a mixed approach that combines atom tracing (as many substrate
atoms as possible should reach the product) with RPAIR roles could improve the pre-
diction accuracy for seed compounds as well as reactions.

8.2 Improvement of pathway prediction

In this section, improvements are suggested that do not affect the accuracy, but ease the inter-
pretation of results or extend the applicability of the approach.
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First, improvements concerning the subgraph extraction are listed.

e Subgraph enumeration. To allow the inspection of alternatives, not only the lightest
subgraph should be returned, but subgraphs up to a requested number ordered according
to their weight.

e Subgraph p-value. It is of interest to know how likely it is to obtain a particular subgraph
score for a given seed node number. To answer this question, several authors compute
the p-value of a subgraph ([77, 3]). These authors repetitively extract subgraphs for
a given number of randomly selected seeds to obtain a distribution of subgraph scores.
The p-value of an extracted subgraph given a certain seed node number is then computed
from the seed number-specific distribution. Since the subgraph extraction approaches
developed in this thesis are computationally expensive, it could be envisaged to pre-
compute these distributions for several seed node numbers.

e Subgraph filtering. In two-end path finding, a number of filter options exist. Some of
these filter options (no paths above a certain length or weight, absence of specific nodes)
could be implemented for multiple-end pathway prediction as well. For instance, the
predicted pathway could be filtered to remove all inter-seed paths above a certain length
or weight.

e Subgraph layout. An improved graph layout would improve the "readability" of the
predicted pathway. Currently, a general-purpose graph software [44] is used to layout
predicted pathways. This software could be replaced by tools specialized on the layout
of biological pathways (e.g. [102]).

Another series of improvements concerns the data sets.

e More metabolic databases. The pathway extraction tool currently offers networks from
KEGG and MetaCyc. Integration of other metabolic databases, e.g. Reactome and UM-
BBD would allow the prediction of pathways in more specialized metabolic networks.

e Transporters and compartments. Another extension would be the prediction of
metabolic pathways from metabolic networks that integrate data on transporters. For
instance, the transport of glucose across the cell membrane could be described by the
reaction: glucose_extern — glucose_cytoplasm. Ideally, the different cell com-
partments should also be described by these extended metabolic networks. A metabolic
network consisting of several modules would result, where each module describes the
metabolism in one compartment and where the same compound may occur more than
once in different modules (e.g. glucose_extern, glucose_cytoplasm). Modules are con-
nected by transport reactions. For such networks, an additional constraint may be nec-
essary to minimize the number of transport reactions in a predicted pathway.

e Integration of other biological networks. Networks could not only integrate data on
transporters and compartments, but also on enzyme regulation and signal transduction.
Such integrated networks are already available for some organisms (e.g. [46, 165]).
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8.3 Evaluation of pathway prediction applied to
biological data

This thesis focussed mainly on the development and evaluation of the multiple-seed pathway
prediction approach. The next step is the application of pathway prediction to biological data
sets, which poses however some new challenges.

e Integration of experiment-derived scores. Genome-scale experiments generate data on
thousands of reactions or compounds. These data can be integrated into pathway pre-
diction by modifying node weights. Several ways to compute node weights from exper-
iment data were proposed ([77, 40]). Given these weights, it is unclear whether a weight
policy is still needed and if so, how to best combine weights derived from experiments
with weights computed with the weight policy.

e Positive and negative test sets. The evaluation of pathway prediction on omics data
requires known cases of up- or down-regulated and unaffected pathways as positive and
negative test sets. These will be difficult to obtain, thus the evaluation could partly be
carried out on artificial data as in [139, 40].

e Comparative evaluation. Since many different approaches for metabolic pathway pre-
diction exist (see Introduction section 1.10.3), a CASP-like protocol (e.g. [115]) could
be developed that compares their performance on a number of selected test cases.

e Experimental validation. Finally, experiments have to be performed (e.g. by '*C-
tracing) to confirm or refute the predicted pathways.

8.4 Applications of pathway prediction

Pathway prediction approach was originally developed to interpret microarray data. The ap-
proach is generic enough to be applied to other high-throughput data sets as well, e.g. to inter-
pret changed enzyme levels (e.g. relative protein abundances measured by iTRAQ, [153]) or
compound levels (e.g. measured by gas chromatography/time-of-SSight mass spectrometry,
[106]) between two conditions.

Metabolic pathway prediction could also be useful in metabolic reconstruction (see Intro-
duction, section 1.10.1). It can propose a pathway given a set of interesting (e.g. co-expressed)
enzyme-coding genes and can thus serve as an alternative to pathway mapping, especially if
the latter resulted in a set of incomplete pathways. If applied to organisms with known or
predicted operons but unknown metabolism, metabolic pathway prediction can reconstruct
metabolic pathways from enzyme-coding operons.

Another interesting application would be the prediction of biodegradation pathways, espe-
cially if several intermediates are known. In contrast to other prediction tools (e.g. [50, 80]),
the multiple-end pathway prediction approach accepts both compounds and reactions as input,
thus it can incorporate knowledge on intermediates as well as on participating enzymes (e.g.
if the genome of involved organisms is known).
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An example for a possible application of pathway prediction is the following case: In [12], a
novel experimental technique is presented that determines the presence/absence of thousands
of annotated reactions in an organism of interest. This technique, termed reactome array,
was applied to two organisms (Pseudomonas putida and Streptomyces coelicolor) and three
microbial communities (geothermal pool on a volcanic island, surface seawater and deep-sea
hypersaline anoxic lake). Pathway prediction could elucidate which metabolic pathways are
differentially active in these organisms and communities.
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O Materials and methods

9.1 Graph algorithms

This section summarizes the graph algorithms that were applied in this thesis.

The computational complexity of the algorithms is given using the following notation: 7 is
the number of nodes of the input network, m is the number of edges/arcs in the input network,
s is the number of seeds ! or seed node groups and K is the number of requested paths.

9.1.1 Enumeration of the K-shortest paths

The K-shortest paths problem is the problem of enumerating, in increasing length, the K-
shortest paths between a source and a target node in a graph or digraph. In a weighted graph
or digraph, the K lightest paths should be enumerated.

REA

In this thesis, the recursive enumeration algorithm (REA) developed by Jimenez and Marzal
[83] has been selected as K-shortest paths algorithm. Other algorithms for this problem exist
(e.g. [51]). REA has a computational complexity of O(m + Knlog(m/n)) and outputs one
path at a time in order of increasing weight. The original REA source code written in C (with
modifications by Pierre Schaus and Jean-Noél Monette) is called within a Java wrapper.

REA does not return paths, but walks (i.e. nodes may be repeated). However, in practice
REA is sufficiently quick that non-simple paths can be filtered out. Other constraints applied
on the paths (e.g. maximal path length and weight, mutual exclusion of reaction directions,
mutual exclusion of node sets in general, absence/presence of user-provided nodes) are like-
wise implemented by filtering the REA output.

Filtering REA output is effective and convenient, but poses a problem. Since REA lists
walks instead of paths, it can enumerate an infinite number of walks in case the input graph
contains a cycle. Thus, a time limit is required to stop REA in case the requested paths do not
exist or do not pass the filter criteria. In addition, an upper limit on the output walk number
prevents out-of-memory errors. Both limits may prevent the complete enumeration of correct
paths. In practice, this problem is only relevant in large, unweighted networks. The user
receives a warning when REA was stopped due to these limits.

I'The set of seed nodes is a sub-set of the nodes in the network.
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Source and target node sets

By default, K-shortest paths algorithms enumerate paths between one source and one tar-
get. Using a graph transformation suggested by Olivier Hubaut and described in [47], paths
between a set of sources and a set of targets can be enumerated. The idea is to introduce
pseudo-nodes, each of which is connected to one seed node set. Then, paths can be enumer-
ated between the pseudo-nodes, which are afterwards removed from the output paths. Figure
9.1 illustrates this concept.

Figure 9.1: Pseudo-nodes are artificial nodes that are added to the input network to enable searches
between seed node sets. For instance in K-shortest path finding, all start nodes are connected to a start
pseudo-node and all end nodes to an end pseudo-node. Paths are enumerated between the start and the
end pseudo-node, which are afterwards removed from the paths.

Paths and pathways

In the path finding approach presented in chapter 2, a pathway is considered to be the union
of all first-ranked paths, i.e. all paths having the same weight. Thus, a pathway predicted by
path finding may contain branches.

Directionality and symmetry

In a symmetric graph, the weight of the shortest path between any two nodes A, B
w(shortest_path(A,B)) equals w(shortest_path(B,A)). Undirected graphs are obviously
symmetric, since their adjacency matrix is symmetric. Importantly, the directed graphs eval-
uated in this thesis are also symmetric, because each reaction is represented by two reaction
directions. This is exemplified in Figure 9.2. Thus, shortest paths between a node pair need
to be computed in only one direction, either from A to B or from B to A. This symmetry no
longer holds for graphs containing irreversible reactions. In these graphs, shortest_path(A,B)
and shortest_path(B,A) both need to be computed to find the shortest paths between a node
pair A and B.

9.1.2 Subgraph extraction from multiple seeds

Computationally, it is much more challenging to predict pathways from a seed set instead of
two seeds. The enumeration of the lightest paths between two seeds or two seed sets is a
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Figure 9.2: In a symmetric graph, the weight of the shortest path between nodes A and B is the same
as the weight of the shortest path between B and A. This property holds also for directed metabolic
graphs that include for each reaction both directions (Figure A). In this case, the shortest path between
A and B (colored in violet) can be "mirrored" to obtain the shortest path between B and A (colored
in cyan). Reactions R1 and R2 are reversible. However, if the metabolic graph contains irreversible
reactions (e.g. R1 in B), this symmetry no longer holds (Figure B).
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polynomial problem which can be solved optimally. In contrast, as will be discussed below,
the extraction of the lightest subgraph is NP-hard, necessitating the use of heuristics.

During this thesis, seven subgraph extraction algorithms have been evaluated. They can be
divided in random-walk based (kWalks), shortest-paths based (Klein-Ravi [95], Takahashi-
Matsuyama [154], pairwise K-shortest paths) and hybrid algorithms (which combine each of
the shortest-paths based algorithms with kWalks).

Given the weighted input graph, the shortest-paths based algorithms try to find a minimum-
weight subgraph that connects the seed nodes. Thus, these algorithms try to solve the Steiner
tree problem, which can be stated more formally as follows: Let S be a subset of the node set
V in a weighted graph G. The Steiner tree problem is to find a minimum-weight tree subgraph
of G that contains all the nodes in S (adapted from [67]). The minimum-weight tree subgraph
is also referred to as lightest subgraph. The Steiner tree problem is NP-hard [89], thus it may
be impossible to find an algorithm that solves it in polynomial time. The shortest-paths based
algorithms use different heuristics to solve the Steiner tree problem. This means they are not
guaranteed to find the lightest subgraph, but they find a subgraph that is at least close, if not
identical to the lightest. Except for Klein-Ravi, which relies on the shortest paths algorithm of
Dijkstra [39], the shortest-paths based algorithms find all shortest paths between two seeds by
enumerating all first-ranked paths with REA.

KWalks takes an altogether different strategy: Instead of minimizing the weight of the
subgraph connecting the seed nodes, it maximizes its relevance.

Although their strategies differ, all seven algorithms take the same input, namely:

e a weighted graph that can be either directed or undirected (except for Klein-Ravi, which
only accepts undirected graphs)

e a set of seed node sets

From this input, they extract a subgraph, which represents the predicted pathway.

Multiple seed node sets

The graph transformation described in paragraph 9.1.1 can be extended to handle multiple seed
sets (as proposed in [47]). In this case, each seed set is connected to one pseudo-node. A seed
set is considered to be connected to the subgraph as soon as one of its members is connected
to the subgraph. Thus, seed sets allow to express AND/OR relationships between seed nodes:
The seeds within one set have an (inclusive) OR relationship, whereas seeds between sets have
an AND relationship. When seeds are mentioned below, they may refer to the seeds in case
one seed set is given or to the pseudo-nodes in case sets of seed sets are given.

Klein-Ravi

The algorithm by Klein and Ravi ([95]) is a heuristic to solve the node-weighted variant of the
Steiner tree problem. First, the distance between any node pair in the graph is obtained with
an all-to-all shortest paths algorithm (e.g. [39]). A set of trees is considered where each tree
initially consists of a single seed node. At each step of the algorithm, a node and a subset of
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the remaining trees are selected such that the cost of tree merging is minimized. At least two
trees have to be merged in each step. The cost of tree merging is computed as the sum of the
weight of the selected node and the weights of the shortest paths between the selected node
and the selected tree subset. This sum is divided by the number of trees in the selected subset.
The algorithm terminates when all trees are merged. The computational complexity of this
approach is O(n*logn + nm + ns*logs).

The same implementation as in [147] was used, which was kindly provided by Nadja Betzler
[15].

Takahashi-Matsuyama

The algorithm by Takahashi and Matsuyama ([154]) initializes the sub-network with a node
chosen at random among the s seeds. It then proceeds by identifying in each step the lightest
path(s) between any of the remaining seed nodes and any node in the sub-network. The lightest
path(s) is merged with the sub-network. The computational complexity of this approach is
O(s(m+ Knlog(m/n))).

This algorithm has been implemented in Java, with the following modifications:

e Not the shortest, but the K-shortest paths are searched to ensure that all paths of the
same weight are included in the solution subgraph. Thus, the subgraph extracted by this
algorithm is not necessarily a tree.

e Instead of pre-computing the shortest paths between all node pairs as proposed by Taka-
hashi and Matsuyama, only needed (K-shortest) paths are computed. This is done
efficiently by introducing at each step a pair of pseudo-nodes, one of which is con-
nected to all nodes in the current subgraph and the other is connected to all remaining
seed nodes. This reduces the run-time from O(s(n?)) as indicated by the authors to
O(s(m+ Knlog(m/n))), where O(m+ Knlog(m/n))) is the run-time of REA.

e If no paths can be found between the initial single-node subgraph and the remaining
seeds, the subgraph is initialized with another seed. This is repeated until either all seeds
have served to initialize the subgraph or a single-node subgraph has been initialized that
can be connected to one of the remaining seeds. This alleviates Takahashi-Matsuyama’s
weakness with respect to orphan seed treatment. Why this is important will be discussed
in paragraph 9.1.2.

Pair-wise K-shortest paths

Pair-wise K-shortest paths has been developed during the initial stages of this thesis and can
be considered as a heuristic to solve the Steiner tree problem. In the first step, REA is called
successively on each pair of seed nodes. The resulting path sets are stored in a path matrix, and
the minimal weight between each node pair is stored in a distance matrix. In the second step,
the sub-network is constructed from the path sets, starting with the lightest path set. Step-wise,
path sets are merged with the subgraph by increasing order of their weight. The process stops
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Table 9.1: KWalks parameters.

Parameter Default Explanation Modified in
value the evaluation
Limited true Random walks are not infinite, no
but of limited length.
L 50 Maximal length of a random walk. | no
Up to true Random walks of less than no
the maximal step number
are allowed.
Initial seed node | uniform Distribution of seed node no
probabilities distribution | probabilities.
Iteration number | 1 The number of times kWalks yes
is executed on a graph.

if either all seeds belong to one connected component of the sub-network or all path sets have
been merged with the sub-network.

The computational complexity of this approach is O(s?(m + Knlog(m/n)), because the
REA algorithm is called s? times.

kWalks

The kWalks method is a generic algorithm ([48, 21]) to build a most relevant subgraph con-
necting seed nodes in a large graph. The relevance of an edge is measured as the expected
number of times it is visited by random walks connecting seed nodes. These expected passage
times reflect both the topology of the network and the edge weights.

A subgraph is obtained from the edge relevances by keeping only those edges above a min-
imal relevance threshold. This threshold is automatically fixed such that the subgraph induced
by the selected edges is weakly connected. The sub-networks extracted by kWalks may con-
tain branches ending in non-seed nodes. These branches are removed in a final pruning step.

KWalks takes some additional parameters not shared with the other subgraph extraction
algorithms. An important one is the iteration number. The edge relevances computed by
kWalks can serve as new edge weights. kWalks can then be run on the input graph with
updated weights. This iterative process may be repeated a number of times to increase the
difference between more and less relevant edges.

Table 9.1 lists the kWalks-specific parameters. The unlimited kWalks computes the edge
and node relevances as the expected number of times edges and nodes are visited by walks
of unlimited length. The limited kWalks is a computationally more efficient approximation
of the unlimited case, where walk length is limited. Most of the parameters were not varied
during evaluation, because they have reasonable default values. For instance, the parameter L
(maximal length of random walks) is set to 50, because measurements on artificial networks
have shown that very good precision/recall curves are obtained for this length [48].
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In this thesis, the implementation of kWalks by Jerome Callut was used, which was kindly
provided by Pierre Dupont. The computational complexity of the unlimited kWalks is O(sn?)
and of the limited kWalks is O(sLm), where L is the maximal allowed length of the random
walks. Since L is typically a small constant, kWalk’s runtime increases linearly with the seed
node number for a given input graph.

Hybrid subgraph extraction algorithms

As discussed in chapter 3, kWalks is more sensitive whereas the shortest-paths based algo-
rithms are more specific with respect to pathway prediction accuracy. Therefore, they were
combined in a hybrid approach.

Such a hybrid approach runs in two steps: kWalks extracts a sub-network representing a
fixed proportion of the input network and the shortest-path based algorithm is launched on
this intermediate sub-network to obtain the final pathway.

Combining kWalks with path-based approaches gives two new parameters:

o Size of the sub-network kWalks extracts a sub-network whose size is fixed to a given
percentage of the number of nodes in the input network.

e [nput or computed weights The path-based algorithms may either use the input weights
or the edge/node relevances computed by kWalks.

The difficulties of assembling a metabolic pathway from multiple paths

The shortest-paths based algorithms construct a pathway from several paths. For metabolic
graphs, this creates several problems, which have not yet been solved satisfactorily.

e Treatment of irreversible reactions. In graphs containing irreversible reactions, it is not
ensured that the irreversible reactions in the subgraph operate in the same direction.

e Mutual exclusion of reactant pairs across paths. This is currently only implemented
for Takahashi-Matsuyama, at the cost of rendering the resulting subgraph seed-node-
order dependent. Thus, this algorithm could return different subgraphs when repetitively
executed on the same seeds and input RPAIR graph. However, such behavior is rarely
observed in practice.

Orphan seed nodes and disconnected components

A predicted metabolic pathway may contain orphan seeds or may consist of several compo-
nents.

Orphan seeds are seed nodes or seed node sets that could not be connected to the subgraph.
Orphan seeds can occur for the following reasons:

e No path exists between the orphan and the subgraph in the input graph, either because
the input graph consists of several components or contains irreversible reactions.
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e A path exists, but does not pass the filter criteria (e.g. it contains nodes already excluded,
or does not contain nodes required to be present).

A pathway may connect all seeds and seed node groups, but may not be a connected graph.

This can occur when several seed node sets have been given as input, as depicted in Figure
9.3A.

A
seed A1 ~.
seed B1 T
group A o0l group B

i seed A2 s .

1

! seed B2

seed A3
seed C1
|

B

re-
arranged

group A seed B1

seed A1 seed B2

seed C1 re-

arranged
group B

Figure 9.3: A subgraph is extracted for the three seed node sets group A, group B and group C. Group
A is connected to group B via seed B1, but group C is connected to group B via seed B2. Thus, two
components are formed, one containing seed Al and B1 and the other containing seed C1 and B2
(Figure A). After re-grouping of the seed sets, it is possible that the two components are connected (in
this case by an intra-group connection with respect to the original seed groups) (Figure B).

179



Preprocessing and postprocessing

Preprocessing

Preprocessing eases the task of subgraph extraction by connecting seeds that can be treated
without heavy computation. For instance, neighboring seed nodes such as a reaction and its
substrate can be directly connected. The treatment of indirect neighbors (those that are sep-
arated by one node, e.g. substrate and product of a reaction) is less obvious. In a weighted
graph, a path with many intermediate nodes may be lighter than a path with only one interme-
diate node. However, in the RPAIR network, additional information on the intermediate node
becomes available. Consider for instance two seed reactant pairs that share a main compound.
It makes sense biochemically to link them via this compound. It is still possible that a lighter
path exist, but it is less likely that this path is biochemically more relevant. A small-scale eval-
uation on four branched pathways manually mapped from MetaCyc onto KEGG showed that
preprocessing enhances both accuracy and speed of computation. In the absence of a thorough
evaluation, the decision on whether or not this option should be enabled is left to the user.

Postprocessing
As discussed in section 9.1.2, the extracted subgraph may consist of several components. In
some situations, it may make sense to repeat pathway prediction with re-grouped seed sets.

Consider for instance an enzyme B that contributes two reactions B1 and B2 to a path-
way. This enzyme will be treated as a seed node group consisting of two seeds. During
conventional pathway prediction, at least one of these seed reactions will be connected to the
subgraph (assuming the seeds are not orphans), but the second reaction is not necessarily con-
nected. If pathway prediction is repeated with seed sets re-arranged such that the seed nodes
of each component form a new seed set (see Figure 9.3B), the second reaction of the enzyme
may be connected to the pathway. However, the solution obtained after postprocessing is not
necessarily identical to the solution that would have been obtained had the seeds been given
separately.

Treating all reactions associated to an enzyme as separate seeds is not a satisfying solution
either, because due to the imprecise enzyme-reaction mappings not all of them may be rele-
vant for the pathway. Thus, seed sets in combination with postprocessing might be a way to
deal with these imprecise mappings. However, without an evaluation, it is not clear whether
postprocessing is really helpful in these cases and is therefore left as an option to the user.

Comparison of the subgraph extraction algorithms

Differential prediction accuracy of subgraph extraction algorithms

Chapter 3 presented a comparison of the subgraph extraction algorithms with respect to their
pathway prediction accuracy. This section discusses likely reasons for the different accuracies
reached by the subgraph extraction algorithms. The performance of the algorithms might dif-
fer for other networks, for instance the KEGG RPAIR network. Unfortunately, the accuracy of
the algorithms could not be evaluated for the KEGG RPAIR network, because of the absence
of a sufficient number of branched reference pathways with KEGG identifiers. KEGG maps
are not suitable for reasons discussed in the introduction, section 1.4. The aMAZE pathways
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are not an appropriate reference pathway set either, because of their small number of branched
pathways. Careful mapping of four selected MetaCyc pathways onto KEGG showed that auto-
matic mapping without curation would be inaccurate and it was beyond the scope of this thesis
to manually map all the MetaCyc pathways onto KEGG. However, it would be highly inter-
esting to compile such a reference pathway set in the future in order to evaluate systematically
the performance of the subgraph extraction algorithms for KEGG RPAIR networks.

In the compound-weighted MetaCyc network, kWalks, even if iterated, does not reach the
accuracy of shortest-paths based approaches. One possible reason may be that the current
version of kWalks does not handle mutual exclusion between forward and reverse direction
of reactions. Thus walks can cross reactions from substrate to product to another substrate,
which results in an irrelevant pathway.

Klein-Ravi has the lowest prediction accuracy of the three shortest-paths based algorithms,
very likely because in its current implementation it does not accept directed networks. Its
accuracy may be higher for the RPAIR network, which can be undirected for reasons discussed
in chapter 2. Takahashi-Matsuyama outperforms pairwise K-shortest paths by 8%. The reason
is that pairwise K-shortest paths only searches shortest paths between seed nodes, whereas
Takahashi-Matsuyama also takes into account shortest paths between seed nodes and other
subgraph nodes. Thus, K-shortest paths can miss a path between a seed node and a subgraph
node that is lighter than any path to another seed node, which would be detected by Takahashi-
Matsuyama.

All three shortest-paths based approaches yield a small yet significant increase in accuracy
when combined with kWalks (as measured with a paired signed Wilcoxon rank test). Ap-
parently, kWalks discards nodes that would otherwise be predicted as false positives in the
pathway. However, kWalks’ main role is to increase the computational speed of pathway
prediction.

Strengths and weaknesses of subgraph algorithms
Apart from their prediction accuracy, the algorithms have other strengths and weaknesses that
are discussed here.

To summarize: There is no single subgraph extraction algorithm that can be recommended
for all situations. In most situations however, the winner of the evaluation described in chapter
3, namely the hybrid of Takahashi-Matsuyama and kWalks, should be used.

In general, hybrids are quicker and more accurate than their shortest-paths based pendants,
but they have a shortcoming: Whereas the repetition of the shortest-paths based algorithms
does not change the solution (except for Takahashi-Matsuyama as discussed in 9.1.2), it was
observed that different solutions were returned when executing one of the random-walk based
algorithms repetitively on the same seeds. This behavior may probably be due to ties in the
edges relevances. From two edges of equal relevance, one is selected at random and added
to the growing subgraph. When the selected edge is the last needed to meet the threshold
criterion, the algorithm stops. Which of the two edges is incorporated into the subgraph can
therefore differ upon repetition of the subgraph extraction. However, in most cases only one
or a very small set of solutions is returned for repetitive executions.

KWalks is the quickest of all the tested subgraph extraction algorithms and in addition can
discover weights. In the absence of a weight policy, extracting a subgraph with the edge rel-
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evances returned by kWalks instead of unit weights increases the accuracy of the pairwise
K-shortest paths algorithm by more than 10%. Moreover, kWalks allows to refine the rela-
tionship between seed nodes by assigning probabilities to them. It is also the only one of the
tested algorithms that can extract other than trivial cyclic pathways.

However, kWalks has to be iterated to reach a high accuracy, which decreases its speed con-
siderably. Even iterated kWalks was not among the top five algorithms with highest accuracy,
for reasons discussed in section 9.1.2.

Klein-Ravi is by far the quickest among the three shortest-paths based algorithms, but nei-
ther does it take into account several paths of equal weight nor is it applicable to directed
networks.

Pairwise K-shortest paths is the slowest of the three shortest-paths based algorithms, be-
cause it computes the K-shortest paths between each pair of seed nodes, thus its runtime
increases quadratically with the seed node number instead of linearly as for Takahashi-
Matsuyama.

However, pairwise K-shortest paths is robust with respect to orphan seed nodes, whereas
Takahashi-Matsuyama is not. At each step, Takahashi-Matusyama computes the K-shortest
paths between all remaining seed nodes and the subgraph. As soon as Takahashi-Matsuyama
cannot connect any of the remaining seed nodes to the subgraph, it stops and returns an un-
connected subgraph. However, even though it is not possible to connect the seed nodes to the
subgraph, it may be possible to connect them among each other, thus obtaining a subgraph
with several components. In order to connect non-orphan seeds among each other, Takahashi-
Matsuyama would have to test all s X (s — 1) seed node combinations and thus would reach
the runtime of pairwise K-shortest paths.

Simply using the largest connected component of a network does not avoid orphans, since
in RPAIR networks, reactant pairs exclude each other mutually. Thus, whether a seed node
is an orphan or not depends on the other seed nodes. Even worse, the order of seed nodes in
RPAIR networks matters, because the nodes that are forbidden (by mutual exclusion) depend
on which seed node is selected first. As mentioned in 9.1.2 reactant pair exclusion across paths
is only implemented for the Takahashi-Matsuyama algorithm.

Apart from the better treatment of orphans, another advantage of pairwise K-shortest paths
is that it outputs a distance matrix for the seeds, which allows to group them by standard
cluster algorithms. Pairwise K-shortest paths comes with an option to generate a dendrogram
of the seed nodes. Such a dendrogram cannot be obtained from Takahashi-Matsuyama.

By default, Takahashi-Matsuyama should be favored over pairwise K-shortest paths, be-
cause it is quicker, more accurate and takes mutual exclusion of reactant pairs across paths
into account. In special situations and if the graph is not an RPAIR graph, pairwise K-shortest
paths can be run to connect orphans among each other or to group seeds using the seed distance
matrix.

Exact solution of the Steiner tree problem

In [105], an algorithm solving the Steiner tree problem exactly is described. This algorithm has
not been used because it requires commercial software to be installed (CPLEX) and because
it is unclear whether it could be customized to treat mutual exclusion of nodes (required for
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Table 9.2: Composition of selected metabolic networks that were employed for the evaluation of path-

way prediction.

Network | Database Di- Compound | Reaction | Arc/edge | Evalu-
(version) rected* | number number number | ation
reaction | KEGG true 5,312 6,359 x 2 | 53,572 path
graph LIGAND (41.0) finding
RPAIR KEGG false 4,297 7,058 28,232 path
graph RPAIR (41.0) finding
reaction- | KEGG false 4,297 12,828 51,312 path
specific | LIGAND/ finding
RPAIR RPAIR
graph (41.0)
MetaCyc | MetaCyc true 4,891 5,358 x 2 | 43,938 pathway
graph (11.0) prediction
with mul-
tiple seeds

* In a directed graph, reactions are duplicated to represent both directions. Consequently,
the arc number between a reaction and a compound is also duplicated.

treatment of reaction directions and reactant pairs). If these obstacles could be overcome, it
would be worth evaluating this algorithm.

9.2 Networks and reference pathways

9.2.1 Metabolic networks

During this thesis, pathway prediction was evaluated with networks constructed from both
KEGG and MetaCyc. KEGG networks were built in a variety of ways: with selected
compounds or reactant pair classes removed and as directed or undirected graphs. An ex-
haustive list of all KEGG networks constructed is available at http://rsat.ulb.ac.be/
pathfindingsupplementref/MetabolicGraphs.html. Likewise, several versions of the
MetaCyc network were built (details can be found in chapter 3).

Table 9.2 lists properties for a selection of these networks, namely all those that are sup-
ported by NeAT (of course, since the networks in NeAT are updated, their version and conse-
quently their node and edge numbers may be different from those indicated in the table).

9.2.2 Metabolic reference pathways

In general, reference pathways were modified as follows: Terminal compound nodes were re-
moved from all reference pathways, because the evaluation took place between seed reactions.
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Table 9.3: Filtering steps applied to the aMAZE reference pathways.

All organisms \ E. coli \ S. cerevisiae \ H.sapiens
Pathways before filtering
Pathways (116) 55 29 32
Cyclic* pathways (7) 2 4 1
Branched* pathways (25) 13 5
Pathways with less than 3 reactions (46) | 20 14 12
Pathways after filtering and linearization
Pathways (69) (137 |14 | 18
Pathways after mapping of reactions to reactant pairs
Pathways (55) (32 |11 |12

* BioPool compounds not counted

After removal of terminal compounds, only reference pathways with at least five nodes were
kept, to avoid trivial predictions. A number of more specific filter steps and modifications was
applied to each reference pathway set separately.

Reference pathways for path finding

Path finding was evaluated with reference pathways from three organisms taken from aMAZE.
Table 9.3 summarizes the filtering steps, which reduced the 116 aMAZE pathways to the 55
linearized reference pathways used for evaluation. Figure 9.4 displays a histogram of the node
numbers for the final pathway set. Since the pathways are linearized, the node number of a
pathway indicate its length.

The linearized aMAZE pathways can be obtained in various formats from http://
rsat.ulb.ac.be/pathfindingsupplementref/ReferencePathways.html. The unmod-
ified aMAZE pathways are available as part of the metabolic database described in section
9.3.

Reference pathways for multiple seed pathway prediction

As can be seen from Table 9.3, only 25 of the aMAZE pathways are branched. To eval-
uate pathway prediction with multiple seeds on a larger set of branched pathways, the 171
reference pathways annotated for S. cerevisiae in MetaCyc (version 11.0) were parsed from
the organism-specific biopax.owl and pathways.dat files. The latter file contains the pathway-
specific classification of compounds into side and main, which is not included in the OWL file.
From these reference pathways, a large number had to be removed for the following reasons:

e They involved non-small molecules.

e They consisted of several components.
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aMAZE pathway node number distribution
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Figure 9.4: Histogram of pathway node numbers for the 55 reference aMAZE pathways used for the

evaluation of two-end pathway prediction. Since the pathways are linearized, this plot also reflects their
length distribution. All pathways below five nodes have been discarded.

e They contained BioCyc identifiers that were absent from MetaCyc.
e They consisted of less than five nodes.

From the 78 remaining pathways, seven more were removed because they contained nodes
absent from the largest connected component of MetaCyc. Finally, 71 pathways remained
for evaluation, more than half of them branched and/or cyclic. Thus, the MetaCyc reference
pathway set poses a real challenge for pathway prediction. Figure 9.5 plots the distribution of
node numbers for the final pathway set.

Table 9.4 lists the MetaCyc pathways that were kept for evaluation along with their proper-
ties.

Table 9.4: The 71 reference S. cerevisiae pathways obtained from MetaCyc (11.0) that were used for
the evaluation of pathway prediction with multiple seeds.

Pathway Node Arc Number of | Cycles
name number | number | branches present
4-hydroxyproline degradation 7 6 0 false
aldoxime degradation 5 4 0 false
allantoin degradation 12 11 2 false
arginine biosynthesis III 12 13 4 true
asparagine degradation I 5 4 0 false
aspartate superpathway 1 7 6 0 false
aspartate superpathway 2 17 16 4 false
aspartate superpathway 3 10 9 2 false
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bifidum pathway 29 33 12 true
butanediol fermentation 36 47 18 true
chorismate biosynthesis 13 12 0 false
cysteine biosynthesis II 9 8 0 false
de novo biosynthesis of pyrimidine

ribonucleotides 19 18 0 false
fatty acid oxidation pathway 11 10 0 false
gluconeogenesis 22 22 2 false
glutamate degradation I 6 6 2 true
glutamate fermentation I-the

hydroxyglutarate pathway 9 8 0 false
glycerol degradation II 16 16 2 false
glycolysis I 17 17 2 false
heme biosynthesis 11 15 14 0 false
histidine biosynthesis I 19 18 0 false
homocysteine and cysteine interconversion 7 8 2 true
homoserine and methionine biosynthesis 14 13 2 false
homoserine biosynthesis 5 4 0 false
isoleucine biosynthesis I 9 8 0 false
isoleucine degradation III 17 16 0 false
leucine biosynthesis 7 6 0 false
lipoxygenase pathway 13 12 6 false
mannosyl-chito-dolichol biosynthesis 5 4 0 false
methionine biosynthesis I 8 7 2 false
methionine biosynthesis II1 5 4 0 false
non-oxidative branch of the

pentose phosphate pathway 10 12 4 true
polyamine biosynthesis | 8 7 0 false
polyamine biosynthesis III 8 7 0 false
pyridine nucleotide biosynthesis 10 9 2 false
pyridine nucleotide cycling 15 18 6 true
pyruvate oxidation pathway 6 5 2 false
riboflavin and FMN and FAD biosynthesis 17 17 2 true
salvage pathways of purine

and pyrimidine nucleotides 29 35 13 true
salvage pathways of purine nucleosides 16 17 4 true
salvage pathways of pyrimidine ribonucleotides 1 | 5 4 0 false
salvage pathways of pyrimidine ribonucleotides 2 | 7 6 2 false
serine biosynthesis 5 4 0 false
serine-isocitrate lyase pathway 28 29 4 true
spermine biosynthesis 7 6 0 false
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sucrose biosynthesis 8 7 2 false
sucrose degradation I 5 4 0 false
sucrose degradation III 12 12 4 false
superpathway of fatty acid oxidation

and glyoxylate cycle 1 7 6 0 false
superpathway of fatty acid oxidation

and glyoxylate cycle 2 11 10 0 false
superpathway of glycolysis and

TCA variant VIII 46 55 16 true
superpathway of glycolysis, pyruvate

dehydrogenase, TCA, and glyoxylate bypass 39 41 4 true
superpathway of isoleucine and

valine biosynthesis 1 7 6 0 false
superpathway of isoleucine and

valine biosynthesis 2 9 8 0 false
superpathway of leucine, valine,

and isoleucine biosynthesis 1 14 13 2 false
superpathway of lysine, threonine and

methionine biosynthesis 9 8 0 false
superpathway of phenylalanine, tyrosine

and tryptophan biosynthesis 25 24 0 false
superpathway of ribose and deoxyribose

phosphate degradation 1 9 8 2 false
superpathway of ribose and deoxyribose

phosphate degradation 2 8 7 0 false
superpathway of serine and glycine biosynthesis | 7 6 0 false
superpathway of sulfur amino acid biosynthesis 19 20 4 true
TCA cycle — aerobic respiration 19 20 2 true
TCA cycle variation VIII 28 32 8 true
threonine biosynthesis 9 8 0 false
trehalose biosynthesis I1I 7 6 0 false
tryptophan biosynthesis 11 10 0 false
UDP-N-acetylgalactosamine biosynthesis 9 8 0 false
urate degradation 12 11 2 false
ureide degradation 9 9 6 false
valine biosynthesis 7 6 0 false
xylulose-monophosphate cycle 10 10 0 true
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S. cerevisiae (MetaCyc) pathway node number distribution
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Figure 9.5: Histogram of pathway node numbers for the 71 reference MetaCyc pathways used for the
evaluation of multiple-end pathway prediction. All pathways below five nodes have been discarded.

9.2.3 Comparison of a predicted to a reference pathway

In order to quantify the accuracy of the metabolic pathway prediction algorithms, predicted
pathways have to be compared with annotated ones.

Accuracy calculation

In this thesis, accuracies are calculated as in [31, 32] based on the overlap of nodes in the
predicted and annotated pathway.

A true positive (TP) node is a node that is present in both the reference and the predicted
pathway. A false positive (FP) node is a node that is present in the predicted but absent in the
reference pathway. Finally, a false negative (FN) node is a node that is absent in the predicted
but present in the reference pathway.

Importantly, seed nodes are not counted as true positives.

Figure 9.6 illustrates these definitions.

The sensitivity of pathway prediction is then defined as:

TP
Sn=——— 9.1
TP+FN
The positive predictive value is defined as:
TP
PPV = —— 9.2
TP+FP ©-2)

The PPV instead of the specificity is used for accuracy calculation, because the formula for
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specificity involves true negatives:

TN
Spec = ——— 9.3
PEC= TN FP ©3)
However, the true negatives in the case of pathway prediction are all compounds and reactions
present in the database that were absent from both predicted and annotated pathway. This is
a huge number (~18,000 for the KEGG reaction network) with respect to the number of false
positives, thus Spec would be always close to one.

Given Sn and PPV, the geometric accuracy is defined as:

Accg = Snx PPV 9.4)

The arithmetic accuracy A, = is avoided, because in extreme cases, it is dominated
by either Sn or PPV. Consider for instance a subgraph that includes the entire KEGG LIGAND
reaction graph. It would have a sensitivity of one and a PPV close to zero. Still, its overall
arithmetic accuracy would be as high as 0.5, whereas its geometric accuracy would be close
to zero.

Sn+PPV
2

reference pathway nodes

false negatives (FN)

true positives (TP)

predicted pathway nodes

Figure 9.6: The accuracy of pathway prediction is calculated based on the overlap of the nodes in the
reference and predicted pathway. False negatives are nodes that are present in the reference pathway
but absent from the predicted pathway (red). False positives are non-seed nodes that are present in the
predicted but absent from the reference pathway (orange), whereas true positives are non-seed nodes
that are present in both the reference and the predicted pathway (green intersection of reference and
predicted node set).
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Node set overlap versus pathway alignment

An alternative to the node set comparison would be a pathway alignment. However, path-
way alignment algorithms would have comparatively long runtimes, as they have to cope with
branched pathways. Thus, their use is infeasible in a large-scale evaluation such as the one
presented in chapter 3. The main advantage of pathway alignment algorithms is their consid-
eration of node arrangement. However, because of the structure of metabolic pathways, the
nodes composing them cannot be arranged in any number of ways. Thus, node set intersec-
tions reflect well the degree of similarity between two metabolic pathways.

Overall, the accuracy measurement is quite conservative. Since terminal compounds were
removed from the reference pathways, they are counted as false positives. Likewise, alterna-
tive reactions between two compounds are counted as false positives, even though they share
a reactant pair with the correct reaction.

9.2.4 Evaluation procedure

Before starting the evaluation, the reference pathway set, the metabolic graph, the pathway
prediction algorithm to be evaluated and its parameters are selected. Then, the evaluation
iterates over the set of reference pathways. The final accuracy is the average of all individual
accuracies.

The results of the evaluations are stored in a database. For two-end pathway prediction, a
web interface has been written, so that the results can be browsed on the internet at: http:
//rsat.ulb.ac.be/pathfindingsupplementref/index.html.

Evaluation of path finding
For each reference pathway, the following steps are performed:
1. The terminal reactions of the reference pathway are selected as seed nodes.

2. The metabolic graph and the seeds are given to the pathway prediction algorithm, which
returns a pathway.

3. The accuracy of the predicted pathway is computed as described above.

Evaluation of multiple-end pathway prediction

For each reference pathway, the following steps are performed:

1. All terminal reactions of the reference pathway are selected as seed nodes. Pathway
prediction and accuracy computation are carried out for these seeds.

2. One additional intermediate reaction is selected at random from the reference pathway.
Pathway prediction and accuracy computation are repeated with the terminal and inter-
mediate reactions as seed nodes.
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3. Step 2 is repeated as many times as reactions exist in the reference pathway. Reactions
already in the seed node set are not selected again from the reference pathway.

4. The evaluation of the reference pathway terminates if all its reactions have been added
to the seed node set.

Figure 9.7 shows the result of the evaluation for the Takahashi-Matsuyama algorithm in the
directed, degree-weighted MetaCyc graph.

9.3 Metabolic database

In order to store, manage and access metabolic data from different sources, a database is
needed.
In particular, the database has to meet the three following requirements:

e Storage and retrieval of metabolic networks obtained from different source databases.
e Storage and retrieval of metabolic pathways obtained from different source databases.
e Mapping of genes to reactions and reactant pairs.

The aMAZE database [101] would have been the database of choice, but it is no longer
maintained. Other generic biological or metabolic databases or parsers [99, 25, 58] were not
available at the time or did not offer needed functionality (such as coverage of KEGG RPAIR).

Therefore, it became necessary to design and implement a metabolic database that performs
the tasks listed above.

9.3.1 Data model

The data model of the metabolic database was inspired by the aMAZE data model [163, 101],
but is much simpler, since its goals are much less ambitious than those of the aMAZE
database. The aMAZE database was designed to accommodate biological data in general
(metabolism, regulation, signal transduction, etc.), whereas the database presented here is
specific to metabolic data and does not cover regulation or signal transduction. Furthermore,
it does not model explicitly the stoichiometry of reactions, because this was not needed for
the pathway prediction approach adopted in this thesis. Polypeptides that are themselves re-
actants of reactions cannot be modeled, because the database is restricted to small molecule
metabolism. Care has been taken to ensure that organism-specific features of pathways such
as reaction directions are modeled at the level of pathway steps and not at the level of reac-
tions, compounds and enzymes. The pathwayStep class roughly corresponds to the catalysis
class in biopax, with the difference that pathwayStep objects can be associated to main com-
pounds. Proteins consisting of several polypeptides or operons comprising several genes can
be modeled with the help of the bioentity child and parent classes.
Figure 9.8 depicts the data model of the metabolic database.
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pathways

Figure 9.7: This heat map summarizes the evaluation performed for the algorithm Takahashi-
Matsuyama in the directed, degree-weighted MetaCyc graph. The x-axis lists the number of reaction
nodes that still have to be predicted. Thus, for x equals 1, all except one reaction were given as seed
nodes to the algorithm. For x equals 2, all but two reactions were given as seeds to the algorithm, and
so forth. The y-axis enumerates all 71 reference pathways in alphabetical order. The colors of the heat
map reflect the geometric accuracy, with red for an accuracy of 0, orange for an accuracy of 0.5 and

geometric accuracy heatmap
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green for an accuracy of 1. Overall, 406 predictions were carried out.

192



Table 9.5: Content of the metabolic database as of October 2009.

Database version Number of | Number of | Number of | Number of
reactions/ | compounds | pathways | organisms
reactant pairs
KEGG 49.0 7,432 6,078 0 0
LIGAND
KEGG 49.0 10,913 5,661 0 0
RPAIR
KEGG 50.0 5,301 4,233 145 1 (refe-
PATHWAY rence)
MetaCyc 13.0 4,116 3,412 1347 391
aMAZE 2006 392 443 116 3
(no longer
maintained)

9.3.2 Implementation

The metabolic database is object oriented. The underlying relational database is hosted by
postgres [135] and the object-relational mapping was implemented in Java with Hibernate
[71]. These technologies have the advantage to be open source (postgres: BSD license, Hiber-
nate: GNU Lesser General Public License) and can therefore be freely distributed.

9.3.3 Contents of the metabolic database

Since most metabolic databases provide their data in biopax format [16], a parser was written
to load data in this format into the metabolic database. In addition, a parser for KGML files
was written, because at the time these files were not available in biopax format (they have
been converted recently to biopax). These parsers do not modify or filter the data, except for
removing orphan compounds, non-small molecule compounds (such as polymers and glycans)
and reactions having identical substrates and products or involving non-small molecules. To
implement more sophisticated quality checks was out of the scope of this thesis.

Currently, the metabolic database contains KEGG LIGAND, KEGG RPAIR, the reference
maps of KEGG PATHWAY, MetaCyc and aMAZE pathways.

Since the parsers are included in the NeAT command line tool set, users can update the
data or add more data, e.g. organism-specific KEGG PATHWAY maps or PGDBs (path-
way/genome databases) from BioCyc (such as HumanCyc).
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Figure 9.8: Data model of the metabolic database, showing the classes with their attributes and the
relations between them.
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A Introduction to graph theory

In this section, a number of concepts and definitions from graph theory that are important for
this thesis are explained. Alternative names for the defined terms are given in brackets. Most
of the definitions have been adapted from [67]. Figure A.2 visualizes some of these concepts.

Graph

A graph is a structure consisting of a set of nodes (also called vertices) and a set of edges. An
edge is defined as an unordered pair of nodes (the nodes of a pair do not need to be distinct in
case of a self-loop). The unordered node pair represents the end points of the edge.

Directed graph (digraph)

The definition of a directed graph is the same as of a graph, except that the node pair that
represents the end points of an edge is now ordered. The first node of the ordered pair is also
called tail node, the second head node. Thus, an edge points from the tail node to the head
node. An edge in a directed graph is also called an arc. From this definition follows that an
arc has always one of two possible directions. For instance, given the nodes u and v, an arc
may point from u to v or from v to u.

Simple graph
A simple graph contains no self-loops or multiple edges (arcs) between a node pair. All graphs
used in this thesis are simple.

Bipartite graph

A bipartite graph (digraph) consists of two node sets A and B and one edge (arc) set. Each
edge (arc) has one end point belonging to A and the other end point belonging to B. Thus,
there is no edge (arc) between any two nodes of the same node set.

Hypergraph

A hypergraph is a graph where each edge is an unordered node set. A graph is a special case
of a hypergraph where each edge is a node set with only two (possibly identical) nodes. A
directed hypergraph is a directed graph where each arc is an ordered pair of (possibly empty)
disjoint node sets A and B, where A is the tail of the arc and B the head. Thus, the hypergraph
is a generalized graph where an edge (arc) may connect more than two nodes. Figure A.l
shows an example of a hypergraph.

Weighted graph

A weighted graph (digraph) is a (directed) graph where each edge (arc) is assigned a real
number, called its weight or cost. A variant is the node-weighted graph (digraph), where each
node instead of each edge (arc) receives a weight.
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Figure A.1: The three node sets C1, C2 and C3 define three hyperedges in a hypergraph. The Figure
was taken from Figure 1 in [93].

Table A.1: Adjacency matrix of graph shown in Figure A.2.

la|1b|1c|1d|1le|2a|2b|2c | 2d
laj] O O Of O] O] 3|, 2] 0| O
Ib| 0] O, O O] O] O] O] O] O
Ic| O] O O O O O Of 3] O
Id| 0] 0, 0| O] O] O] O] O] 4
le| O O O O] O] O O] O O
2a| 0 2] O 6] O] O O] O O
2b| O O 0|66 O O O O] O
2c| 0O, O] O O] O] O O] O O
2d| 0| O O] O O, O] O O] O

Subgraph

A subgraph of a graph (digraph) G is a graph H whose nodes and edges (arcs) are in G. The
weight of a subgraph is the sum of its edge (arc) weights. In a node-weighted graph, it is the
sum of its node weights.

Adjacency matrix
The adjacency matrix uniquely describes a graph or digraph. Given a graph G with n nodes,
its adjacency matrix A is a n X n square matrix, where each entry A;; may be either O (there
is no edge between node i and j) or 1 (there is an edge between node i and j). In a weighted
graph, entry A;; may be a real number, which represents the weight of the edge between node
1 and j. The adjacency matrix of a graph is always symmetric, but it may be asymmetric in
case of a digraph.

As an example, the adjacency matrix of the directed, weighted, bipartite graph depicted in
Figure A.2 is given in Table A.1.

In-degree
In a directed graph D, the in-degree of a node v is the number of arcs in D of which it is a head
node.

Out-degree
In a directed graph D, the out-degree of a node v is the number of arcs in D of which it is a
tail node.
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Degree (connectivity)

The degree of a node v in a graph is the number of edges of which it is an end point plus twice
the number of self loops. In a directed graph, the degree of a node v is the sum of its in- and
out-degree.

Neighbor nodes (neighbors)
A neighbor of a node A is an end point of an edge, of which node A is the other end point.

Walk

In a graph, a walk from node vy to node v, is an alternating sequence W =<
V0,€1,V1,€2,...,Vn—1,€n,vy > of nodes and edges such that the endpoints of edge e; is the
node pair v;_1,v; fori = 1,...,n. In a directed graph, W is a walk if each arc e¢; is directed from
node v; | to node v;, that is v; 1 is the tail of arc e; and v; is the head of arc ¢; foralli =1, ..., n.
Importantly, a node v or an edge (arc) e may appear more than once in a walk. A trivial walk
consists of only one node and no edges (arcs). A closed walk is a non-trivial walk that begins
and ends with the same node. An open walk begins and ends with different nodes.

Path (Simple path)

A path is a walk with no repeated edges (arcs) and no repeated nodes (except the start and
end node in a closed path). The weight of a path is the sum of its edge (arc) weights. In a
node-weighted graph, it is the sum of its node weights. The length of a path is the number of
its edges (arcs).

Cycle
A non-trivial closed path is called a cycle.

Terminal nodes
In this thesis, terminal nodes are nodes in a directed graph that have either an in-degree of zero
or an out-degree of zero.

Node distance
In [31, 32], the distance between two nodes u and v in a node-weighted graph is defined
as: dist(u,v) = w(shortest_path(u,v)) — w, where w denotes the path weight or node

weight.

Connected graph
A node v is reachable from a node u if there is a walk from u to v. A graph is connected if for
every pair of nodes u and v, there is a walk from u to v.

Weakly connected digraph (Connected digraph)
A digraph is weakly connected if for every pair of nodes u and v, there is a walk from u to v
and/or a walk from v to u.

Strongly connected digraph

Two nodes u and v are mutually reachable in a digraph D, if D contains both a directed u-v
walk and a directed v-u walk. A digraph is strongly connected if every two of its nodes are
mutually reachable. A strongly connected digraph is also weakly connected.
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Components
A graph G that is not connected is made up of components, each of which is a connected
subgraph of G.

Orphan node (orphan)
In this thesis, a trivial walk is called orphan node. An orphan node has a degree of zero.

Tree
A tree is a connected graph (or weakly connected digraph) that has no cycles.

-

Figure A.2: A directed, weighted, bipartite graph D is depicted. It has two node sets, namely set
square = {la,1b,1c,1d, le} and set ellipse = {2a,2b,2c,2d}. Each arc has one end point belonging
to square and the other end point belonging to ellipse. Each arc is in addition labeled with an integer,
its weight. Graph D consists of three weakly connected components H1, H2 and H3, where H1 contains
the nodes 1a, 2a, 2b, 1b, 1d and 2d, H2 the nodes 1c and 2c and H3 the node 1le. Node le is an orphan
node. Node 2a has an in-degree of one, an out-degree of two and therefore a degree of three. Thick
arcs depict a possible path from start node 1a to end node 2d. The weight of this path is the sum of its
arc weights, namely 72. Subgraph H1, H2 and H3 form each a tree, but graph D is not a tree, since it is
not connected.
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