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Introduction

Microbes interact
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Louis et al. The gut microbiota, bacterial metabolites and colorectal cancer. Nature

Reviews Microbiology 12:661-672 (2014).




Microbes interact

Introduction

Parasitism
Different dinoflagellate species infected with COF’QP?d with
Dinoflagellate infected by syndiniales parasites pgrasmc
Amoebophrya (MALV-II) dinoflagellates
Endosymbiosis
A
>
Collodaria colony with Acantharian with endo- Dinoflagellate with Diatom with
dinoflagelllate symbionts  symbiotic Phaeocystis kleptoplasts chloroplasts

Images taken from de Vargas et al. Science 348, 1261605 (2015).




Introduction

Ecological interactions

Predator/parasite (win-loss)

Commensalism
(win-neutral)

Mutualism (win-win)

Prey/host (loss-win)

Amensalism
(neutral-loss)

Competition (loss-loss)

Adapted from Lidicker, W.Z.
BioScience 29, 475-477, 1979.




Introduction

Network representation of microbial communities

Primary fermenters

Co-occurrence
analysis to the
rescue’?

Acetogen

s’

Sulfate reducer Methanogen

Who is there and with
which abundance?

Who interacts with whom?



Introduction

History of co-occurrence analysis in ecology

* Jared Diamond suggested assembly rules:

* Rule e: “Some pairs of species never coexist, either by themselves
or as part of a larger combination.”

* Competition between species can be inferred from their
presences/absences across habitats (checkerboard pattern)

. absence

presence

Diamond, J. (1975) “Assembly of species communities”, pp. 342-444 in “Ecology and evolution of
communities” edited by Cody and Diamond, Harvard University Press.




Introduction

History of co-occurrence analysis in ecology cont’d

* Connor & Simberloff: “We challenge Diamond'’s idea that
island species distributions are determined by competition
[...]. In order to demonstrate that competition is responsible
for the joint distributions of species, one would have to falsify
a null hypothesis stating that the distributions are generated
by the species randomly [...]"

* Importance of a null model

Connor & Simberloff (1979) “The Assembly Of Species Communities: Chance or Competition”, Ecology,
6061, 1132-1140.




Microbial network inference

Co-occurrence analysis is network inference

INPUT OUTPUT
Presences/absences Microbial association network
(incidences) Nodes: taxa (OTUs, genera, ...) or

123456 metadata (pH, temperature, ...)
A Edges: significant associations

C | B
S lc NETWORK INFERENCE
D
< > % X s :
Samples (location or time) s ¥ N :
@ /FlashWeave
% E local similarity analysis
=15 —
¥ CCLasso
< ' \_>-a oNet
Samples (location or time) : e
SPIEC-EASI

o /




Microbial network inference

Principle of similarity-based network inference

INPUT
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Microbial network inference

Principle of similarity-based network inference

taxa and binary

INPUT SCORING

presences/absences
(incidences)
123 456
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o Y

|B .

Elc for each possible

(@) .

E D taxon pair, compute
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A D
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v .
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Microbial network inference

Principle of similarity-based network inference

taxa and binary

INPUT SCORING
presences/absences
_ (incidences)
® 123456
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F Y
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Elc for each possible
(@) .
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Vv ¢ > similarity score
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é abundances g\ :>
5 c
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T4 D
£]A
[
S|B
z|cC
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- |D c
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model)
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correct for multiple testing

with p-values above a
specified threshold

1.0



Microbial network inference

Principle of similarity-based network inference

taxa and binary

VISUALIZATION

|::> — positive

INPUT SCORING ASSESSMENT OF
SIGNIFICANCE (Null
presences/absences model)

@ (incidences) repeat scoring step many
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"g A % Score distribution in randomized data
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with p-values above a
specified threshold

— negative

visualize
taxon pairs
with
significant
scores as a
network



Challenges

* What are the challenges of microbial network inference?

CHALLENGES

\AHEAD//



Shallowly sequenced sample

Genus 2

Microbial network inference: Challenges

Problem 1: Varying sequencing depth

Deeply sequenced sample

Technical variability

Read count =
Genus 4 cell count

15
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correlations

Varying sequencing depth leads to spurious
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Microbial network inference: Challenges

Removal of sequencing depth bias

Rarefaction: Select beads from the
big bucket with a probability equal
to their proportion, until selected
bead number is the same as in the
small bucket

=> Additional zeros can be
introduced, counts are preserved

Normalization: Convert counts into
relative abundances (proportions) =>
counts are lost, no additional zeros

17



Rarefaction/normalization: compositionality

/ Samplel Sample2 Sample3  Sample 4

Red taxon ‘ ‘ ‘
555 U0 0
\ 4 <4 SE2E

Absolute
abundances

S

\G\rey taxon ’
/ 1,00

Relative
abundances
0,50
0,00

Sample 1 Sampe 2 Sample 3 Sample 4 Sample 5
m Bluetaxon ™ Red taxon Grey taxon 18

Microbial network inference: Challenges




Microbial network inference: Challenges

How to deal with compositionality

K Transform data e.g. \

using centered log ratio
transformation

* Use compositional-
robust measures such
as Aitchison distance or

K Bray Curtis dissimilarityj

OR

K° Quantify total cell \

counts, e.g. using
flow cytometry

o

= Working with log ratios poses a zero treatment problem

—> Relative abundances can be multiplied with cell counts,
solving compositionality issue experimentally

—> But: if cell counts do not depend on microbial interactions,
they are a confounder driving associations, so it depends

19



Challenges

Microbial network inference

Problem 2: The challenge of rare taxa

Microbial abundance tables are zero-rich

Ambiguity of the zero: taxon may be absent or
present below detection level (sampling and
sequencing depth)

lgnoring zeros (e.g. in log-ratio transformations)
is a loss of information but not treating zeros
can lead to spurious associations

Currently: ad-hoc filters on taxon absences
(prevalence filter) or taxon pairs (number of
matching zeros); upper bound on zero number
above which statistical tests are no longer
meaningful (Cougoul et al.)

( The problem of co-absences \

Pearson’s r: 1, p-value < 1E-15

® .
\‘ [l Spearman’s rho: 1, p-value < 1E-15

J

ﬂd-hoc solution: Prevalence fiIter\

Sample 1| Sample 2| Sample 3| Sample4| Sample 5

Sam

ple 6

0 5 2 0 3

0

0 0 0 2 0

58 56 45 129 81

18

0 2 J 175 0

S1 S2| S3| S4| S5

S6

Garbage 0] 5 2 o 3

0

taxon ~ 58 56 45| 129 81

18

l
ol

Presence in at least| | 50% of samples

S of 2 o| 177] o

0

—

PLoS ONE 14, e0200458.

Cougoul et al. (2019) “Rarity of microbial species: in search of reliable associations.”

%
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Microbial network inference: Challenges

Problem 3: Indirect edges

* Indirect edge: a spurious edge introduced by the
response of two taxa to a third factor (another taxon or an
environmental factor)

e “correlation is not causation”

Abundance
N 20

| t L OTUA  Indirect edge OTUB

Environmental factor



Microbial network inference: Challenges

Environmentally induced indirect edges:

1) Include
environmental
factors in network

I~ \
. e — N
a8 | 3l
v_a o /- e

Possible solutions

2) Stratify samples
and compute a
network per sample

group

-
»

L
»

0233

Low pH  High pH

3) Regress out
environmental
factors before
network
construction

4) Filter network

Problem with third solution: non-linear dependencies of taxon

abundance on environmental factors (optima)

Optimum pil

Faust (2021) “Open challenges for microbial network construction and analysis.” The
ISME Journal 15, 3111-3118.

22




Environmentally induced indirect edges continued

Clusters in sample-wise PCoA

Condition 1 Condition 2

HTaxon1l mTaxon 2

Taxon3 mTaxon4

Microbial network inference: Challenges

Sample heterogeneity PC‘?AZ Condition 2
100
1] > 9?
%
Condition 1

(]
50 )

Iy

» PCoAl
0 fr—

Indirect edges in inferred
network

Abundantin Abundantin
condition 1 condition 2 23



Microbial network inference: Challenges

Problem 4: Sampling scale

* Edges may differ depending on
sampling scale

* Storage effect: variability at the
microscale allows survival of
competing species (one or the other
dominates locally, but both co-occur
globally)

* Problem of experimental design

Sample 1

N
N

s
g

Sample 2
N A

=
bl

Sample 3

N
N

Inferred edge is negative within a sample
but positive across the samples

interactions” The ISME Journal 13, 2639-2646.

Chesson (2000) “Mechanisms of Maintenance of Species Diversity” 31, 343-366.
Armitage & Jones (2019) “How sample heterogeneity can obscure the signal of microbial

24



Challenges

Microbial network inference

Sampling scale: example

Local competition hidden by shared niche preference

8e+8
J. lividum
7e+8+
—®&— Monoculture
—®— Mixed with Leu. lactis
_ 6e+8- | —e— Mixed with Lac. piscum
T —®&— Mixed with Leu. lactis and Lac. piscum
é 5e+8
Tool: CoNet 2 oo
£ 4de+8 [0
>
C
> 3et840 2 4 6 8 10 12 14 16 1
o
O
O
Tool: MENA 0O 2 4 6 8 10 12 14 16

Incubation time (h)

Positive association predicted Negative interaction found

Wang et al. (2017) “Combined use of network inference tools identifies ecologically
meaningful bacterial associations in a paddy soil” Soil Biology & Biochemistry 105, 227-235.

18
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Tools

Which microbial network inference tools are
available and how do they work?

——
s oNet

FlashWeave

MDSINE

SPIEC-EASI



Tools

Microbial network inference

CoNet w
: , i oNet
Different measures (Pearson, Spearman, Bray Curtis, ...) R

capture different types of relationships, but they converge
when thresholds are increased

Ensemble: measures make different mistakes, but tend to
agree on correct result, so combine them

Capnocytophaga adundance

\ 2 0 T T T T T T T 1
BRI i - o v e e em e e e e e e S 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Atopobium adundance

A non-linear relationship is
missed by Pearson

Faust & Raes (2012) “Microbial interactions: from networks to models.” Nature Reviews Microbiology
10 (8), 538-550.




Tools

Microbial network inference

Raw taxon
count matrix

I

Final graph

CoNet: Overview

Relative abun- ﬂidge score \

/ Preprocessing \

Rare taxa are discarded,

but their sum is kept as

an additional row (rare=
arbitrary prevalence cut-
off).

Counts are converted

into relative abundances

wormalization). /
@essment of significar@

P-value computation,
p-value merge with
Fisher’s or Brown’s

method, multiple

we pt

testing correction with
Benjamini-Hochberg,
only significant edges

'\\ N Computation of all
e /| pair-wise scores for
all selected
measures
(similarities,
PV dissimilarities,
— correlations)
Initial multi-graph
Only measure-specific edges above
user-selected thresholds kept
g Spearman ‘
N
Pearson ‘\

Bray-Curtis

28



Tools

Microbial network inference

CoNet: P-value computation (CCREPE)

Edge- and measure-specific p-value is computed with a Z-test:
probability of the permutation distribution mean given the (normally
distributed) bootstrap distribution
Renormalization to reduce compositionality bias

not significant

Frequency
150
|

100
|

300

250
1

significant

Frequency
200
1

150
1

100

bootstrap
distribution

renormalized
permutation
distribution

0.0 0.1 0.2 0.3 04 0.5

score

score

0.1 0.2 03

PLoS Computational Biology 8, €1002606, 2012.

Faust™, Sathirapongsasuti* et al. “Microbial Co-occurrence Relationships in the Human Microbiome.”

29




Microbial network inference: Tools

CoNet: Implementation

CoNet is available on command line and as a Cytoscape app (versions 2.X and 3.X)
CoNet page: http://msysbiology.com/conet

Cytoscape app: http://apps.cytoscape.org/apps/conet

R implementation of core functions: https://hallucigenia-sparsa.github.io/seqgroup

Co-developers & contributors N
Fah Sathirapongsasuti i '@

Jean-Sébastien Lerat
Gipsi Lima-Mendez

Jeroen Raes S (V@
s €. Cyto
! o

> 29,700 downloads from wes oNet )

Cytoscape app store K /

Faust & Raes (2016). “CoNet app: inference of biological association networks using Cytoscape”
F1000Research 5:1519




Tools

Microbial network inference

SPIEC-EASI

( O data]

& ! R
Data processing,

centered log-ratio =

_ transformation (clr) |

Dependency graph,
covariance matrix

f

.

Sparse graphical
model learning

\

J

Stabllity-based
model selection

Image taken from: https://stamps.mbl.edu/images/f/f0O/STAMPS_Network_1.pdf

(Christian Mueller)

Kurtz et al. (2015) “Sparse and Compositionally Robust Inference of Microbial Ecological
Networks” PLoS Computational Biology 11(5), e1004226.

31



Tools

Microbial network inference

SPIEC-EASI: Sparse graphical models

SPIEC-EASI estimates the inverse covariance matrix, such that resulting
network has fewer indirect edges

Zero in the inverse covariance matrix: conditional independence
Assumptions: data are multivariate normally distributed and all relevant
variables are taken into consideration

Intuitive example by David MacKay:
, ‘ | 4 Weights (nodes) connected by
Y1 2 Y3 Y4 Ys .
|,W<?> (73 o f?j 6: ?/ - springs (edges)
¥ ; g ; : : Sparse = few
. . . . non-zero entries
Covariance matrix Inverse covariance matrix i the inverse
[ 0.83 0.67 0.50 0.33 0.17 | [ 2 -1 0 0 0 | Covafiance
7| 067 133 1.00 0.67 0.33 |1 @ L B 0 matrix = few
K==—|050 1.00 1.50 1.00 0.50 K'=m| 0 4 2 =1 0 edges
k 0.33 0.67 1.00 1.33 0.67 0 ) -1 2 =1
I 0.17 0.33 050 0.67 0.83 | ] 0 0 0 -1 2 _
Source: http://www.inference.org.uk/mackay/humble.pdf




Microbial network inference: Tools

SPIEC-EASI: Meinshausen & Biuhlmann

One of SPIEC-EASI’'s methods to infer the inverse covariance matrix:
Meinshausen & BiihImann method (neighborhood selection)

A B CD

Data Z (log-ratio
transformed) .

1 2 3 45 6

A I -

B

C

D

7i Zall_but_i

For each 1 ) Penalty parameter
taxoni, do: il . : i

B’ :argmln(—HZ’ — 7Bl +AA)] )

BeRP hn !

Species number  Sample number Regression coefficients

Result: matrix of regression coefficients; is symmetrised

Edge = non-zero regression coefficient
33



SPIEC-EASI: Stability-based model selection

* StARS: Stability Approach to Regularization Selection

* Bootstrap technique: Repeat network construction a
number of times with 80% of the samples (bootstrap
iteration number = rep.num parameter)

* Purpose: select penalty parameter A such that the number
of edges present across bootstrap iterations is maximized

e Stability means here: stable with respect to small changes in

Microbial network inference: Tools

the data
Q: f:/Q\\ Q: f:/ e R~
/ ‘\\ F b == / ‘\\ F i b_\,_ ¢
C)i \ / ~ ~"""/;9 \ / ~ )_:_,/;9 77
s/ 2 SQ// 7 /
a T\ q 1 T\ q '
O/ L Wy P R gl X
\ Y \ P o
\.O 6/ \ \ g




Tools

Microbial network inference

FlashWeave

SPIEC-EASI’s main weakness: does Global et | e

not take environmental data into S oo

account e
y

"FlashWeave = SPIEC-EASI + owadomionas. oo Vet

metadata”: clr-transforms data and o
exploits conditional independence | f
to reduce indirect edge number, e
taking metadata into account ntorence
(algorithm: si-HITON-PC) .:3:’
Implemented in Julia

] ...

julia

Tackmann, Rodrigues and van Mering (2019): “Rapid Inference of Direct Interactions in Large-Scale
Ecological Networks from Heterogeneous Microbial Sequencing Data” Cell Systems 2019.08.002.




Microbial network inference: Tools

FlashWeave: modes

Sensitive vs fast mode HE mode

* Implementation of * FlashWeave can optionally ignhore
conditional independence: zeros (‘structural zeros’) to deal
— Sensitive mode: partial with heterogeneous samples

correlations on abundances,
assumes multivariate normal

distribution (weak assumption) N oTU presrt
. . OTU absent
— Fast mode: mutual information . e
Sl Sample
on presence/absences e @ e
“. S:lomglz

Sample group 2



Tools

Microbial network inference

Run time (s)

FlashWeave: Run time

TARA Oceans
60000 ca. 17h

50000

40000

30000

20000

10000| ca. 3h
O Lm—

Method

*> 172 800s (2 days)

Runtime on heterogeneous data
HMP (all Body sites)

35000
ca. 8h 30000
25000

20000

Run time (s)

15000
10000

ca. 1.5h so00

0

Network inference method

W= Flashw-S mmm FlagshwHE-S ™ SpiecE-MB = g| SA
Flashw-F FlashwHE-F

SpiecE-GL ®== SparCC wsm mLDM

CoNet

=> My current choice for best cross-sectional microbial network inference tool,;

pending independent evaluation

*> 172 800s (2 days)

*

Method

*

*

*

*

37



Tools

Microbial network inference

Other microbial network inference tools

MENAP (Molecular Ecological Network Analyses Pipeline): exploits random
matrix theory to threshold similarity matrix

SparCC: sparse correlations robust to compositionality
REBACCA/CCLasso: sparse compositionality-robust correlations
Mint: Takes environmental factors into account through hierarchical regression

gCoda: estimates inverse covariance like SPIEC-EASI, but deals differently with
compositionality

NetCoMi: correlation networks with comparison functions List is not complete

MENAP: Zhou et al. (2010) “Functional Molecular Ecological Networks” mBio 1 (4), e00169-10.

SparCC: Friedman & Alm (2012) “Inferring Correlation Networks from Genomic Survey Data.” PLoS Comp Bio 8 (9), €1002687.
REBACCA: Ban et al. (2015) “Investigating microbial co-occurrence patterns based on metagenomic compositional data”
Bioinformatics 31(20):3322-3329.

CClasso: Fang et al. (2015) “CCLasso: correlation inference for compositional data through Lasso” Bioinformatics 31(19):3172-3180.
Mint: Biswas et al. (2015) “Learning Microbial Interaction Networks from Metagenomic Count Data” RECOMB, Research in
Computational Molecular Biology, 32-43 (Lecture Notes in Computer Science).

gCoda: Huaying et al. (2017) “gCoda: Conditional Dependence Network Inference for Compositional Data” Journal of Computational
Biology 24(7): 699-708.

NetCoMi: Peschel et al. (2021) “NetCoMi: network construction and comparison for microbiome data in R” Briefings in
Bioinformatics 22(4), 1-18.




Tools exploiting time series
information

0 100 200 300

Time

Inference of directed networks



Microbial network inference using time

1 ()

Local Similarity Analysis (LSA)

~

Example lagged association

-2 0 2 4 =

— ©0—0

" time i b Y.

LSA uses dynamic programming to find local associations and
lagged associations

-4

10 1

/" abundance\

* Can be applied to cross-sectional and time series data
e P-values computed through permutation or formula

e Command line tool:
— https://bitbucket.org/charade/elsa/wiki/Home

Xia et al. (2013) “Efficient statistical significance approximation for local similarity analysis of high-throughput
time series data” Bioinformatics 29 (2), 230-237.

Durno et al. (2013) “Expanding the boundaries of local similarity analysis” BMC Genomics 14 (1), S3.

Xia et al. (2011) “Extended local similarity analysis (eLSA) of microbial community and other time series data
with replicates.” BMC Systems Biology 5 (2), S15.

Ruan et el. (2006) “Local similarity analysis reveals unique associations among marine bacterioplankton species
and environmental factors” Bioinformatics 22 (20), 2532-2538.




Microbial network inference using time

Generalized Lotka-Volterra (gLV)

The species network can be represented by the directed
interaction matrix A; entries represent interaction strengths

2
e .3

D

£

) <>

4
R
»

= Negative
— Positive

Species abundance vector X changes as a function of species
initial abundance, growth rates B and its interactions A

dX(t)

dt

= X(1)(B+ AX (1))

Generalized Lotka
Volterra (gLV)

41



Microbial network inference using time

12345678910

0.6 0.8

04

0.2

0.0

Simulation with gLV

Community matrix

"

value
o 0.50

Abundance

0.25
0.00

-0.25

. -0.50

Diagonal: -0.5

12345678 910

Ol

Growth rates

Initial abundances

|

0.00 0.05 0.10 0.15 0.20 0.25

1ZDDQQQFTT

No inter-species interactions:

Abundance

15

1.0

0.5

0.0

N

B2 OONDG A WN =

o

T T T T T
200 400 600 800 1000

Time points

Transient Steady state
oA | X :
o~ | P 2 6

r' ‘.‘r’ P 7
- - v""""‘ll‘.‘ 9
:;tfj;f — 10
2 zéki\\x_
| T T T T T
0 200 400 600 800 1000
Time points
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GLV parameterization

* |dea: infer gLV parameters from time series
e glV parameters include species interaction matrix A
e glV parameterization is a type of network inference

i

= X(t) B+AX(t)

dX(t)

Microbial network inference using time

43



Microbial network inference using time

GLV parameterization tools

* Tools parameterizing gLV equation:

— LIMITS: step-wise forward regression plus bootstrap

— MDSINE: parameterizes gLV with maximum likelihood and
Bayesian algorithms

— SgLV-EKF: parameterizes a stochastic gLV model with an extended
Kalman Filter

— MetaMIS: parameterizes gLV with partial least square regression

List is not complete

LIMITS: Fisher and Mehta (2014). “Identifying Keystone Species in the Human Gut Microbiome from Metagenomic
Timeseries using Sparse Linear Regression.” PLoS one 9, e102451.

MDSINE: Bucci et al. (2016) “Microbial Dynamical Systems INference Engine for microbiome time-series analyses”
Genome Biology 17:121.

Alshawaqfeh et al. (2017) “Inferring microbial interaction networks from metagenomic data using SgLV-EKF
algorithm” BMC Genomics 18:228.

Shaw et al. (2016): “MetaMIS: a metagenomic microbial interaction simulator based on microbial community
profiles” BMC Bioinformatics 17:488.




Evaluation

* How well do microbial network inference tools perform?

Warning:

If not stated otherwise,
everything in this section is
on synthetic data only

A




Microbial network inference evaluation

Tool Evaluation |

—&— CoNet
Tool developers

—&— | SA run their own
— tools on test data
—&— RMT generated by
evaluators

—— SparCC

—— NaivePearson -
NaiveSpearman Run by
— evaluators
Bray-Curtis
—#— MIC

—
=maximal information coefficient

Evaluation: Weiss, Van Treuren, Lozupone, Faust et al. The ISME Journal 10, 1669-1681, 2016.
MIC: Reshef et al. Science 334, 1518-1524, 2011.




Tool Evaluation I: False positives and noise

Most tools predict low number of false positives in data simulated
without interactions (Dirichlet-Multinomial)

CoNet and MIC are robust to noise (similar networks after repeated
rarefactions)

False positive rate Robustness to repeated rarefaction
—&— CoNet
0.20
—=—L5A ool T T T b I T T P T T T T
ons| —a— RMT
e sparcc i L=
FPR 0.10 fj““"»;wi“il;" pre bR —_— 53‘;,14,,; e
O —#— NaivePearson

/. NaiveSpearman

0.05
/ Bray-Curtis

0.00

- : 2 : |
0.001 0.01 0.05 0.1 —=— MIC

Microbial network inference evaluation



Microbial network inference evaluation

Tool Evaluation I: Effect of compositionality

* Compositionality effect is stronger for lower evenness (n.g)

* Bray-Curtis and SparCC are compositionally robust (absolute
versus relative abundance does not alter results)

* Alternative normalization techniques (CSS/DESeq) do not
outperform rarefaction

rarefy (library size 2000) rarefy (library size 1000) CSS DESeq
v. Abundance v. Abundance v. Abundance v. Abundance
]
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Microbial network inference evaluation

Sensitivity

Tool Evaluation I: Interactions

Interaction detection accuracy in zero-rich, compositional

data is low for all tools c

Linear ecological: Linear ecological:
two-species compositional - n . ~9 two-species compositional and sparsity
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Sensitivity: TP/(TP+FN)
Precision (positive predictive value): TP/(TP+FP)
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Microbial network inference evaluation

Inverse covariance to the rescue?

One source of error: indirect edges

Tools based on inverse covariance
take them out

Are these new tools (SPIEC-EASI,
gCoda) more accurate than previous
ones?

FlashWeave not included (published
Indirect edge

afterwards) p—
Direct edge @~ ——

SPIEC-EASI: Kurtz et al. PLoS Computational Biology 11(5), €1004226, 2015.
gCoda: J. Comput. Biol. 24(7), 699-708, 2017.




Data generation:

environmental effects

 Modular and scale-free interaction matrix (Klemm-Eguiluz)
* Simulations with generalized Lotka-Volterra including

Tool evaluation Il (with environment)

* Cross-sectional microbiome abundances generated Sam Rottjers

Community time series

10

Abundance
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Microbial network inference evaluation
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Sample MDS1

...........

SPIEC-EASI MB

CoNet Brown

0.3
Environmental strength

With increasing environmental impact
in the simulations, clusters form in the

networks.
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Microbial network inference evaluation

Tool evaluation Il (with environment)

0.8 °
!a

06 % + CoNet Brown

= y o - CoNet Fisher

> _ - gCoda

04 2o e SparCC

C o Spearman

3 S, # SPIEC-EASIGL

Ty SPIEC-EASI MB

0.2 (2 - ® True positives

0.0
0.00 0.25 0.50 0.75

Precision

Node size scales with strength of
environmental effect

Tools based on inverse
covariance (SPIEC-EASI,
gCoda) are more precise,
but less sensitive than
other tools

Increasing environmental
effect tends to lower
precision, especially in
tools based on inverse
covariance

There is no silver bullet
tool

Rottjers & Faust (2018) “From hairballs to hypotheses - biological insights
from microbial networks” FEMS Microbiology Reviews 42, 761-780.




Microbial network inference evaluation

AUPR

Tool evaluation Il

* Data generated with gLV simulations
* Note the good performance of standard correlation methods
* FlashWeave not included

a — =% b N N AUPR: area under the
06 | 08 ] precision/recall curve
PEA: Pearson

PPEA: Pearson’s partial
correlation

SPE: Spearman

PSPE: Spearman’s partial

correlation

0.6

AUPR
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Hirano & Takemoto (2019) ”Difficulty in inferring microbial community structure based on
co-occurrence network approaches” BMC Bioinformatics 20, 329.
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Microbial network inference evaluation

Evaluation of microbial network
inference from time series

* How well do time series inference tools perform?
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Microbial network inference evaluation

Tool evaluation for time series

* Time series generated with different population = Goodness of fit
models (including gLV)

* Parameters (that is networks) known

0 100 200 300

e Networks inferred from simulated time series @ LIMITs
with LIMITS (the only tool evaluated) Inferred network

* Two comparisons:

— Known network directly compared to inferred
network (accuracy of inference)

Comparison

L. . . i i Simulation

— Original time series compared to time series @th model

generated with model parameterized with inferred
network (goodness of fit)

LIMITS: Fisher and Mehta (2014). “Identifying Keystone Species in the Human Gut Microbiome from
Metagenomic Timeseries using Sparse Linear Regression.” PLoS one 9, €102451.
Evaluation: Faust et al. (2018) “Signatures of ecological processes in microbial community time series”,

Microbiome 6, 120.
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Microbial network inference evaluation

Tool evaluation for time series

* Interaction matrix known: compare inferred to known interaction matrix ->
accuracy of inference

* The more links to infer, the lower the accuracy of LIMITS

* Accuracy for shorter time series is lower, but still reasonable

* Type of interaction model (gLV, Ricker, SOI) does not matter much
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Tool evaluation for time series

* Interaction matrix unknown: compare observed time series to those
generated with parameterized interaction model -> goodness of fit

* Goodness of fit can be misleading: it is high even for a neutral model
that does not take interactions into account explicitly (over-fitting)

LIMITS goodness of fit, colored by sigma

1.00 - — mm
~ ¥R
C
2 |
= 0.75- -+ ' *
S ' 0
é 0.01
g 0.50 - . 0.05
C
o 0.1
c Neutral model . ® NA :
& 0.25- 100 species,
= 3000 time points
Sigma: level of
0.00- =—=@Ph=— . .
! | | internal noise
3 = < m
(O] [0) —_ —_ —
2 30 3| ¢ 8 3 3
T o n n

See also: Cao et al. (2017) “Inferring human microbial dynamics from temporal
metagenomics data: Pitfalls and lessons” Bioessays 39(2).

Microbial network inference evaluation




Evaluation of microbial network
inference on biological data

* How well do the tools perform on biological data?

Matches literature

Estimate performance Compare interactions
on synthetic community to reference database

Microbial network inference evaluation



Microbial network inference evaluation

The challenges of biological validation

With complex ecosystems in situ, it is hard to know Matches lterature;
whether two species do not interact (confirming the
negative is harder than confirming the positive)

That means that we can only assess sensitiviy in situ

In vitro, we can measure all pair-wise interactions
comprehensively and thus can assess accuracy

But we don’t know whether interactions in vitro also
happen in situ

And there may be higher-order interactions (roughly:
an interaction between two species that is modified by
the presence of additional species)



Arabidopsis root (Duran et al., Cell
2018)

Tool: Spearman/SparCC

Data: 16S on 144 plant samples
Validation data: high-throughput
screen of 2,862 antagonistic
bacterial-fungal interactions
Result: predictions for ca. 24 out of
32 tested bacterial OTUs confirmed

Artificial community (Biswas et al.,
Lecture Notes in Bioinformatics 2015)
Tool: Mint

Data: 16S on synthetic 9-species
community

Validation data: co-growth on plates
Result: 2 out of 2 edges confirmed
100% accuracy (no false negatives)

Microbial network inference evaluation

mixed results

TARA Oceans (Lima-Mendez et
al., Science 2015)

Tool: CoNet

Data: 165/18S on 313 open-
ocean samples

Validation data: genus-level
eukaryotic interactions from the
literature (mostly endosymbiosis)
Known pairs: 43

Sensitivity: 42% (18 found)
Precision: uncertain

Note: one novel interaction
confirmed using microscopy

Biological validation of interaction prediction:

Phage-Host (Edwards et
al., FEMS 2015)

Tool: Pearson

Data: 3025 global
metagenomic samples
Validation data: Known
hosts for 820 phages
Sensitivity: hosts correctly
predicted for 9.5% of the
phages (78 found)
Precision: uncertain

Note that global
metagenomic data set
filters for cosmopolitan
phages, however tested
phages may not be
cosmopolitan
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Part Il: Microbial network analysis
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From hairballs to biological hypotheses

Low-accuracy hairball

Hypotheses

Who interacts with whom
Which taxa respond to
which environmental
factors

Which taxa cluster together
and why
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Microbial network analysis examples

Example 1: Human Microbiome Project data

e 242 healthy individuals
 sampled in up to 18 body sites

* 16S & metagenomic sequencing

21202
214842

The Human Microbiome Project Consortium.
Nature 486, 207-214 (2012).
Nature 486, 215-221 (2012).




Microbial network analysis examples

HMP data: Niche structure

Dental plaque subnetwork:

Early biofilm or corncob structures " e

— -,

° ~ 0,, saliva, sugars

®

4 N CO,, lactate, >

S ( acetate, H,0,
~

tooth

Prevotella

Fusobacterlum

\ /
S - - annulus perimeter '
\ Bacteroidetes FO u n d I n T Crevicular fluid T
Leptotrichia annu I us W Corynebacterium W Porphyromonas Fusobacterium W other

W Streptococcus B Neisseriaceae Leptotrichia

\ /7 Tannerella Treponema Haemophilus/Aggr. M Capnocytophaga ] Actinomyces

4 | Capnocytophaga | e
/ 7

~ Image taken from de Welch et al.
\

.~__-" f = PNAS, E791-E800 (2016).

Centipeda early colonizers

=== intermediate colonizers

Olsenella === |ate colonizers

—— colonizer status unknown

Faust et al. (2012) PLoS Computational Biology 8 (7) €1002606. 65




Microbial network analysis examples

Example 2: TARA Oceans

* Global marine expedition, >200 stations spa
oceanic regions, sampled at 2-3 depths
 18S (4 cell size fractions), 16S, viral contigs

data

nning 8

@ Mediterranean Sea
North Pacific Ocean m J North Atlantic Ocean m%
m Red Sea
South Pacific Ocean J. South Atlantic Ocean

Southern Ocean

de Vargas et al. Science 348, 1261605 (2015).
Sunagawa et al. Science 348, 1261359 (2015).
Pesant et al. Scientific Data 2, 150023 (2015).
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Microbial network analysis examples

TARA: Interaction prediction

* Interaction candidate in TARA Ocean data

Prediction Experimental validation
(microscopy)

Flatworm with photosynthetic
microalgal endosymbionts

Abundance profiles from 18S
marine phytoplankton data

Lima-Mendez*, Faust®, Henry* et al. (2015) “Determinants of community
structure in the global plankton interactome” Science 348, 1262073.
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TARA: Linking taxa to function

* Clustering of TARA oceans microbial network using WGCNA

* Cluster representatives screened for strong association to carbon
export: Synechococcus (cyanobacterium) identified

Node centrality
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Guidi et al. (2016) “Plankton networks driving carbon export in the oligotrophic ocean” Nature 532, 465-470.




Example 3: Network inference from time series

* Clostridium difficile is an intestinal pathogen in mammals
* |t can thrive when killing gut microbiota with antibiotics

* Experiment: Mice infected with C. difficile after exposure
to different antibiotics

R

4\/3’ \ +>(\ g V7
N § ¢ 2

Microbial network analysis examples

Buffie et al. (2014) “Precision microbiome reconstitution restores bile acid
mediated resistance to Clostridium difficile” Nature 517, 205-208.




Example 3: Network inference from time series

e Bacterial interaction network predicted from fecal 16S
time series of mice by parameterising gLV model

[l Enterococcaceae B Erysipelotrichaceae
Enterobacteriaceae
Verrucomicrobiaceae

Coriobacteriaceae

Lactobacillaceae
[ streptococcaceae
I Turicibacteraceae
I Clostridiaceae

Microbial network analysis examples

Buffie et al. Nature 517, 205-208 (2014).

2 100
Q — | 1 C. populeti  C. scindens (OTU 6)
= (OTU 10) o
2
S 50 == 3
= 9 E. avium
© o (OTU 2)
E oL" - - o 0
()
o 21 6 10 14 0
Time C. d/ff/C/le
O
(days after clindamycin administration) J
O
Bacterial family O
Bacteroidaceae B Lachnospiraceae e} ©
Porphyromonadaceae Peptostreptococcaceae
B s24-7 Ruminococcaceae o
Staphylococcaceae Coprobacillaceae

o  Predicted network

— Negative

—— Positive
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Microbial network analysis examples

Example 3: Network inference from time series

* Treating mice with bacteria that interact negatively
with C. difficile increases their survival rate

o) Suspension
100 administered
© -o- PBS (control)
** -0- Four bacteria
- 6}

Survival (%)

50 -o- C. scindens
Clostridium scindens produces
w 0 0 10 20 secondary bile acids that inhibit C.
<

Time (d) difficile
(after C. difficile challenge)

Buffie et al. Nature 517, 205-208 (2014).
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Microbial network analysis tools

\

\ =

Manta: Microbial network clustering =

* Challenges:

— Most existing cluster algorithms (e.g. MCL) do not exploit
information given in negative edges

— Microbial networks have a low accuracy

 Manta addresses these challenges

Sam Rottjers
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Microbial network analysis tools

Use the principle: “an enemy of
an enemy is a friend” to group
taxa that share “enemy nodes”
(nodes linked with negative
edges)

Weak node assignments (nodes
that cannot be clustered)

Repeat clustering on partly
rewired networks to assess
robustness of clusters and
cluster memberships

Rewiring [2[514T5] [ .
EE [ Cluster-wise

/ 1 G5 robustness

[T2T3T4]516]7]
cpEEEEm A EEEE @
E= -robustness
[ [5435]

Rottjers & Faust (2020) “manta-a clustering algorithm for weighted
ecological networks” mSystems 5 e00903-19.
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Does manta work? How to evaluate -~~~
a network cluster algorithm?

* Need a data set with known clusters to check
whether the tool finds them back

e Microbiome data with known clusters are hard to
find

* Generate synthetic microbial abundances with
known clusters for manta:

— 1. Population model simulating different
environmental effects on predefined groups of taxa

— 2. Bicluster generation with FABIA

* Choice of data generation process often biases
tool evaluation (two processes better than one)

Microbial network analysis tools

Hochreiter et al. (2010) “FABIA: factor analysis for bicluster acquisition.”
Bioinformatics 26, 1520-1527.




Microbial network analysis tools

Va

Evaluation on population model ~

Louvain, GN and WGCNA unsigned

failed (negative edges)
Sn PPV Acc

manta + weak

manta - Weak —_— %(7) _ _
WGCNA S|8ned 30' I +C "‘3
Louvain < 2 o o
COUV ——— 5 —— —~—
WMCL + 3 — —
Ke.rnigha'rT_-'Ilin _— gg - ——
Kernighan-Lin + - B0 —— ——
0.0 0.5 1.0 0.0 0.5 1.0 0.0 05 1.0
Sep Sparsity
manta + weak ~—— ——— | manta
manta - weak < I WGCNA
WGCNA signed —& — .
WGCNA unsigned 0 <S> I Louvain
LoLu?/%\i/r? ; _— —_<4 B MCL
M%:AIE;I; — 4 W Girvan-Newman
Girvan-Newman —— & < Bl Kernighan-Lin
- n_+ -
Kernighan-Lin — —g

Kernighan-Lin +

/ 0.0

KL performs well but only allows 2 clusters.

1.0 -10-05 00 05 1.0

o
o

Sep (cluster separation) &
sparsity: cluster quality
scores

’
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Microbial network analysis tools

Evaluation on biclusters

Weak node assignments

Keeping the edge signs improves WGCNA

help manta \ . PPV Acc
manta + weak 49 — —
= —@»> 50 —- —-
signe —@ 5 —— ——
GCNA unsigned ——— 46 S — P e—
ouvamn
ouvain * — % —O —O
MCL @ 50 - >
_ MCL + | 1 | |
Glrvan—R'Iewman_+ —> 20 — —>
Kernighan-Lin —a— 50 —a— —a—
Kernighan-Lin + - 50 - —
) 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
MCL+, Louvain and
GN failed Sep Sparsity
manta + weak —_— — e T manta
manta - weak —a— —@ [ WGCNA
WGCNA signed —& — :
WGCNA uES|gne_d —= <§>— [ Louvain
ouvain
. MCL + .I ~ ] Gln/a?n-Newr.nan
Girvan-Newman - B Kernighan-Lin
Girvan-Newman + —> =
K Ke-mhghaETL'.r,]. —a— D o
ernighan-tin - ® Sep (cluster separation)
0.0 0.5 1.0 -10 -05 0.0 05 1.0 & Sparsity: cluster qua||ty

scores
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Microbial network clustering: lessons

* |f your network contains negative edges, use tools that
support them (signed WGCNA, Kernighan Lin, manta)

* |f you think that there are only 2 clusters, run Kernighan Lin

* WGCNA makes an assumption about the network structure
(i.e. that it is scale-free), which may not be true

Microbial network analysis tools




Microbial network analysis tools

Manta in action: Tundra soil =

\)—"

Hairball

Tundra soil network
Layout: organic

Informative

network  -=-

orufijas “‘\

ovu.»e

Clusters:
Tundra soil network after L
clustering & layout with manta A

25 y/ .
Afuchmoddagen |
oYk 7 \
s 1 i’ A
- od ‘(.\"
5

Thes;e/ta«x re
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These’
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.| to robustness of cluster
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¥
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Manta in action: Lake Taihu

120°0'0"E 120°15'0"E_ 120°30'0"E_ 120°45'0"E
— z
N = t—— 10km
>
A ¢ Samping locations:
g ™ @MDR-Corel
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[ PDR-Corel
z =
iy
o
=
z
1=
&
z -
&
-

119°45'0"E 120°0'0"'E 120°15'0"E 120°30'0"E

Macrophyte-dominated regime (MDR)

Microbial network analysis tools

PCoA2: 12.63 %

0.25+

0.00

—0.25+

—0.50 1

Eutrophication: two regimes driven by nutrient concentration

Bray—curtis dissimilarity

\)—’*

P

NOZ-***

TP: total
phosphorus

Turbidity***

-0.3 0.0 03
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@ MDR-Core2
MDR-Edge
PDR-Edge
© PDR-Core2
@ PDR-Corel
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Manta in action: Lake Taihu S

e Network constructed with CoNet
on all 54 samples and clustered
with manta

®
e
®
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A
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TP: total
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Cao, Zhao, Li, Rottjers, Faust and Zhang (2022) Microbial Ecology Accepted.
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Microbial network analysis tools

Microbial network comparison

* We can construct a set of networks e.g.,
one gut microbial network per person

* |s a network core present or do networks

overlap not more than expected by

chance? Sam Réttjers
Edges shared by:

'3 networks

>

but not
3 networks

82



Microbial network analysis tools

Anuran: a toolbox for comparing
noisy microbial networks

* Implements 2 types of null
models: network
randomization with and
without preserving node
degree distribution

* Tests whether a network
property or a core
network is significant
given randomized
networks

Rottjers S, Vandeputte D, Raes J and Faust K (2021). “Null-model-based network comparison
reveals core associations” ISME Communications 1, 36




Microbial network analysis tools

Anuran in action: Sponge microbiome &

Sponge microbiome project: microbiota of 268 different
sponge host species collected around the globe
> 3000 samples from ten sponge orders sequenced

Marine sponges

1 -4 o343 Sample number

Moitinho-Silva, L., Nielsen, S., Amir, A., Gonzalez, A., Ackermann, G. L., Cerrano, C., ... & Steinert,
G. (2017). The sponge microbiome project. GigaScience, 6(10), gix077.

84



Anuran in action: Sponge microbiome @

\)’3‘))_"
o« o _'_ = [nput
* Ten sponge-order-specific == 200 R e
networks constructed with i oo
CO N et : -- Positive control - prevalence
. ‘ . Degree - 10%
* Number of shared edges is 200 S Random - 10%
. oo Q i . . Degree - 50%
significant for edges LI . Random-50%
n

conserved in three
networks -> core network

Number of shared edges

Difference of intersections

Microbial network analysis tools

= Fraction of networks in which shared edges occur



Microbial network analysis tools

Anuran in action: Sponge microbiome

 Core network clustered with = s Bt
[] Bacteroidetes

[] Crenarchaeota
O Cluster 1 [] Cyanobacteria
D Cluster2 G.emmgtimonadetes
] Nitrospirae
[ Bin
I PAUC34f
[l Planctomycetes
M Poribacteria
[l Proteobacteria
I SBR1093
[ Spirochaetes

m a nta < Clustero [ Chloroflexi

e Clusters contain indicator taxa
for high versus low microbial
abundance sponges (HMA vs
LMA)

e HMA vs LMA classification
traverses sponge orders

Cluster O: enriched in HMA phyla
Cluster 1: only LMA phyla

* No 100% core expected (there
are no more highly preserved
edges than expected at
random)

Moitinho-Silva, L., Steinert, G., Nielsen, S., Hardoim, C. C., Wu, Y. C., McCormack, G. P, ... &
Hentschel, U. (2017). Predicting the HMA-LMA status in marine sponges by machine
learning. Frontiers in microbiology, 8, 752.
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Microbial network analysis tools

Anuran in action: Human gut microbiome @‘

Dim2

0.4

0.2

0.0

-0.2

Fecal samples collected for 20 women over six weeks (713
samples) and sequenced (16S rRNA)
20 microbial networks constructed with fastLSA

Rumindcoccaceae
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-
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compositions dominated by
different genera (Rum =
Ruminococcus, Bact =

Color code: enterotype \ Bacteroides, Prev = Prevotella) Y,

I I I I
-0.2 0.0 0.2 0.4

Dim1

Vandeputte,..., Faust, Raes (2021) Nature Communications 12:6740.
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Microbial network analysis tools

Anuran in action: Human gut microbiome

* Significant core network for edges in four or five networks
* Network clusters correspond to enterotypes

Set size
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Rosebuna

<Lachnospiraceae Odoribacter

@VA\‘
<Eaecalibacteriu ‘ VA

'0‘>

usncatenlbacter

Butyricicoccus
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Microbial network analysis tools

Anuran in action: tool comparison

Sponge-order specific
networks constructed with
CoNet and FlashWeave

CoNet networks are
systematically larger

Tool-specific network
intersection is highly
significant

Tools pick up the same
associations, but CoNet
reports many additional
edges (indirect edges)

Sponge orders

Verongiida

Tetractinellida
Suberitida
Poecilosclerida
Plakinidae

Haplosclerida

Dictyoceratida

Clionaida

Chondrillida  =e—

Axinellida
o o o o o o
o o o o o
Yo} o Yo} o Yo}
A Ll N N
Network.size
Difference
Verongiida

Tetractinellida
Suberitida
Poecilosclerida
Plakinidae
Haplosclerida

Dictyoceratida

Clionaida
Chondrillida
Axinellida

o o o o

o o o

o o o

- 3% ™

Set.size

Network

. CoNet

FlashWeave

—_—

—

=

o

-

—_—

—

[ o

-

-_—

- S g
Set.size
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Microbial network analysis tools

\
é
Querying microbial networks K4

A database to query microbial networks would be useful

Existing one by Hu et al.:
http://www.microbialnet.org/mind_home.html

There are dozens of tools to construct microbial networks
Each tool comes with a range of settings
Need for a flexible & local solution




: 6
Mako — key ideas k4

s

B .

S * Use neodj network database and CYPHER

§>, network query language

© * Avoid a centralised database; create network

- .

(T database on the fly from user networks instead

-z

B ako _ CL| Neo4dj Browser

E . % GUI

8 ' o A /

Es o _ :

2 .

O A/ \MATCH 4 », A ,

§ EEEEEN & ) Sam Rottjers

=

Rottjers & Faust “Fast and flexible analysis of linked microbiome data with mako”
(2022) Nature Methods 19, 51-54.
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Microbial network analysis tools

Mako in action

Networks constructed for 60
microbiome data sets taken
from QIITA (tool: FlashWeave)

Networks queried for specific
motifs

More positive than negative
edges found

Animal-derived microbial data
sets enriched in positive 4-

node clique
I

Number of motifs

o\
P -

15000
10000
5000

6000

= I I
4000

Plant
2000
- - Average clustering coefficient
- S e _

10 11 12 13

Network density \

1 2 3 4 5 6 7 8 9 10 11 12 — i é
20000 S ‘ ‘
15000 . T
10000 Non-saline <] -
5000 I 8 e | e
- - [ ] — — — B ‘?\0%\ S ‘e\o%\
1 2 3 4 5 6 7 8 9 10 11 12 ) .. ..
Previous findings on Qiita
2000 Q EMP data with CONey
1000 Saline
0
1 10 11 12 13
AA .1\. IR

- ...\EKN

Gonzalez et al. (2018) “Qiita: rapid, web-enabled microbiome meta-analysis” Nature Methods 15, 796—798.
Faust et al. (2015) “Cross-biome comparison of microbial association networks” Frontiers in Microbiology 6, 1200.
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Microbial network analysis tools

Mako in action

* Task: find associations between
groups of gut bacteria able to
synthesize propionate

* Mako applied to collection of 60
microbial networks constructed
from QIITA to screen for
associations

 Most frequent: Bacteroides and
Lactobacillus

o\
P -

Lactate

Fucose or Most
rhamnose monosaccharides

1,2-propanediol

Number of associations

Propionate
Escherichia

Listeria

Anaerostipes

Clostridium
Lactobacillus :
Bacteroides :
Blautia x

Roseburia




Microbial network properties

What about network properties?

ﬂne on keystone species: “These %n we identify keyst@
ind

ividual populations are the keystone species with networks?
of the community’s structure, and the
integrity of the community and its Y g
unaltered persistence through time, that Sf = ¢
is, stability are determined by their \ 2
activities and abundances” lof
- Hub taxon: Connector
.‘ high degree  t@xon: high
betweenness

(exvern
p

N W

R.T. Paine (1969). A Note on Trophic Complexity and Community Stability. The American Naturalist 103, 91-93.




Microbial network properties

Can tools predict hub taxa?

* Not well (in synthetic data)

Hub taxa Connector taxa
SPIEC-EASI MB- SPIEC-EASI MB-
Mean
SPIEC-EASI GL- p-value SPIEC-EASI GL-
Spearman . bad Spearman-
SparCC- - SparCC-
gCoda- 0‘3 gCoda-
CoNet Fisher- 0.2 CoNet Fisher
CoNet Brown- 0.1 CoNet Brown
T itives-
True positives- 0.0 fue positves LI s
e E 80 € JO o 2 2 g 8 S0 s
Known 958’30«*@2 59-9855:3(7,
5 9 & - = @ i
network ;,m:f%gggw §afém‘%§u‘§$
& & © @ 2w 9 2% ? S
$ % = 2 ey g 00 w @
- W w o o
S o o N o
L7

Rottjers & Faust (2018) FEMS Microbiology Reviews 42, 761-780.




Microbial network properties

Can tools predict hub taxa?

* When a larger number of predicted top hub nodes is
considered, CoNet significantly enriches for correct hubs
(indirect edges may help with this — they are not always bad)

20

-d
O,

Corrgct #

O,

Matching fraction of hub nodes

1.00

Mean p-value

) o o
o ~
o @) ]

-
N

0.00

P-value of matching fraction

0 0‘

:
0
0 ! O

Tool
-+~ CoNet Brown
«- CoNet Fisher
-~ gCoda
® « SparCC
Spearman
o SPIEC-EASI GL
SPIEC-EASI MB

P-value = 0.05

10 0

2
Top #

30



Are correctly identified hub taxa keystones?

* Open question — perhaps in some cases

Example of a validated hub species (a parasite):

P :
1
)

Comamonadaceae AE &

. (other) \._ _____ . .,' _o @

—
g . A,I,/A,c,; M A.L [Albugo + Microbes]
A thallana Ieaf Albugo M A.L [Albugo-free Microbes]
Y . . g A.c. [Albugo + Microbes]
\ f (Q micro b 10 m e species A.c. [Albugo-free Microbes]

Host Plant:
Albugo-infected

Albugo-uninfected (Host Control)

N Dioszegia sp.
% / giasp

Microbial network properties

B L e e e
Ry S T —_— e p<e01
o '. o £3 % s+ b <=0.05
' I Y '56 30 = *xp <=0.01
; ) 25
’ : Qg s
.Albuga sp. 25 $ Q
g-_g 20 = J—
<% = = éﬁﬁ
° 9 = ° ° o
. . . . L. 2 I o & I 3
susceptible versus resistant A. thaliana varieties d = d =

Agler et al. (2012) “Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation”
PLoS Biology 14 (1) e1002352.
Rottjers & Faust (2018) “Can we predict keystones?” (Comment) Nature Reviews Microbiology 17, 193




Summary: what to do when you want to build a
microbial network

e Data preprocessing: split samples into groups if they are
strongly heterogeneous -> filter and sum rare taxa -> normalise
abundances -> if appropriate and available multiply with total
counts

* Network inference: take metadata into account and reduce
indirect edges (currently only FlashWeave supports both)

* Analyse the hairball: map external data onto nodes if
available, check for enrichment of particular taxa or functions
in clusters, compare with other networks and known
interactions, experimentally validate interaction candidates



Microbial network construction and analysis

tutorials
* SparCC, MENA, LSA, CoNet and SPIEC-EASI: ¥
http://msysbiology.com/microbialnetworks/ ==
* FlashWeave and network analysis (manta & NP

anuran): https://rutjers.science/teaching/

* Mako tutorials:
https://ramellose.github.io/mako_docs/ y\



Next steps in microbial network {
analysis

 Network annotation: link taxa to known
physiological properties such as pH optima
— Tool development ongoing (microbetag)

* Experimentally resolve microbial interaction
networks to benchmark inference tools on
biological data

* Explore whether microbial network properties
reflect ecosystem properties
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Tackling compositionality

* The ratio trick: since total abundance T cancels
out in a ratio, the ratio removes dependency on
total abundance in a composition

= X

) Xi T

E —_— = Xi, Xj: abundances of taxa i and j
= T

=1 T

)

(Vg

* CLR transform (introduces neg values):

Divide abundance of taxon i by the
geometric mean of the abundances in

1/n
(H’? X-) / its sample and take the log




Relative vs absolute abundances in network
inference

Water tap size

represents
i) .
- | ‘ nutrient
v o ‘" h concentration in
& ¥ o Jh the inflow
s
S C_____
Q.
-
7

6 ¢ e B

Chemostats with different nutrient concentrations in the inflow. In case density differences are solely
determined through nutrient concentration, total counts are a confounder to be removed.



Supplement

Definition of measures

Hellinger

(x and y each sum up to 1) d(x’y):\/Z(\/;i—ﬁ)z
y.

Kullback-Leibler d(x,y) = Z X, ]OgLX"] +y, 10g(l

(xand y each sum up to 1) X,

Logged Euclidean d(x,y) = \/Z(log(xi) —log(yl-))z

l

Require pseudo-
counts or
smoothing because

) log(0) = -Inf

Hellinger distance and
Kullback-Leibler
divergence are
mathematically
related measures.

Euclidean distance d(x,y) — \/Z(xi — yl.)z

_Bray Curtis .
(Steinhaus is the ZZmln(xi,y,-)
corresponding d(x,y)=1- Z)HZy-

| similarity) ’ l

Bray-Curtis dissimilarity is
computed on row-wise
normalized data (i.e. xand y
each sumuptol)



Supplement

Definition of measures continued

Variance of log-ratios

Aitchison proposed a scaling
between 0 and 1, where 1
corresponds to maximal
similarity:

d(x,y) = var(log(*))

Yi

d(x,y) =1—¢

2.0, = x)0. =)

d(x,y) =

Pearson

V-0 20 -3)

6> d’

Spearman  d(x,y)=1-

n(n —1)

,d, = x, — y.(ranks)

Variance of log-
ratios, conceived

Require pseudo-
counts or smoothing
because log(0) = -Inf

For Pearson, vectors x and y
are standardized (subtraction
of mean, division by standard
deviation) and for Spearman,
ranks are considered, so

for either of
these measures. This also
means that correlations are
scale-invariant, so do not
change when multiplied with
a constant.



Supplement

Comparison of measures
|

Hellinger

0.4

Euclid IO'2

Experiment: Select
1,000 top-ranked and
1,000 bottom-ranked
measure-specific
edges in Houston
data subset of HMP
V35 mothur-
processed 16S data

Bray-Curtis

Jaccard similarity heat map
(Ward clustering) based on
edge overlap

uewueadg
uosiead
Bo7-1ep
siuny-Aeig
plon3g
Jabuley
am



Supplement

Fisher’s method of p-value merging

k
X2, ~=23 In(p,)
=1

k: number of association measures
pi: p-value of the ith association measure
X2,.: Value is chi-square distributed with 2k degrees of freedom

The resulting p-value is the p-value of the Chi-square
value.

Fisher’s method is biased by correlated association

measures. This bias is taken out by Brown’s p-value
merging method.



CoNet: ReBoot

permutation with renormalization (ReBoot)

'm w @ @ @ ln\_ shuffle selected taxon pair

= all )

Q taxa in — >

E one — O —_— —_—

Q group

Q. o

Q. @

- renormalize matrix group-wise

%) compute random score for taxon pair
:. on shuffled, renormalized

abundances

e

Fah Sathirapongsasuti



Supplement

Freguency

CoNet: ReBoot Il

* Permutation test: removes correlation, but also any bias due
to compositionality
* Permutation with renormalization: shifts null distribution

normalized data

spurious correlation

true anti- |:> between b2 and
correlation introduced by
between b1l normalization
and b3
== bootstrap distribution mean Fah
== renormalized permutation distribution mean Sathirapong-
sasuti

120

not significant

Fregquency

0 20 40 60 80

L | | | 1 | |

0 20 40 B0 80 100
L 1 | | 1 |

J‘ h}k significant

0.5 0.0 05 1.0 -1.0 05 0.0 0.5 1.0

-
o

boot boot



CoNet’s assessment of significance reduces number of
false positives

Taxon number versus edge number

Simulations with Dirichlet-

—— Spearman Q
Spearman, permuted and BH-corrected ! Multinomial
o | Spearman permuted, bootstrapped and BH-corrected E
= o
+ o ©
C 5 .
J, 3 == . .
- Simulation parameters:
E o (e} (e}
O g o samples =50
e o I
> 2 8 — p;i=1/S (max. even)
o %’ — sequencing depth = 1000
3 § _ E 6 = 0002
Vg o L repetitions = 100 (black)
— repetitions = 10 (blue, green)
8 - . permutations: 100
]
= bootstraps: 100
= ~ .
o | === — — BH = Benjamini-Hochberg
[ [ [ [ [ [ [ [
10 20 30 40 50 60 70 80

Taxon number

(matrix not normalized, permutation carried out without renormalization)



Supplement

SparCC

* basicidea: use the variance of log ratios (a distance measure robust to
compositionality bias, Aitchison 2003)

ad
X X;are taxon abundance

,X'j vectors

D(x;,x ;) = var| log

* the variance of log-ratios is not scaled, i.e. its maximum value is unknown

starting from the variance of log ratios, an approximation is developed to
estimate correlations robustly

where w is the variance of the
(log-transformed) abundance

2 2
D(xi,xj) =W, —(l)j —2pl.ja)ia)j vector of taxon i and p the
covariance between taxa i and |

* SparCC estimates covariance p for all taxon pairs, assuming that most pairs
are only weakly correlated

Friedman & Alm (2012) “Inferring Correlation Networks from Genomic Survey Data.” PLoS Comp Bio 8 (9),

e1002687.
Aitchison (2003) “A concise guide to compositional data analysis” In: 2"d Compositional Data Analysis

Workshop, Girona, Italy.




Supplement

SparCC Parameters

Iterations

* SparCC fits a Dirichlet distribution to the counts and samples from
this distribution to estimate counts

* final correlation is reported as the median over several sampling
rounds

P-values
* Bootstraps generated by sampling with replacement

e P-values computed from bootstrap distribution as the proportion of
bootstrapped correlations that are at least as large as the original

correlation value
Implementations
* https://bitbucket.org/yonatanf/sparcc (original in Python)
e Part of the SPIEC-EASI R package



Discrete version of GLV: Ricker model

x,(£+80)=1,(6)x, (D)exp(5t Y. a, (x, (6)-(x,)))

ot: discrete time step

Xi(t): abundance of target species i at time point t

<x;>: steady state abundance of species j (carrying capacity)
ni(t): log-normal noise

a;: interaction coefficient between taxa i and j

Supplement

For n,(t) = 1 (no noise) and &t -> 0, Ricker model reduces
to generalized Lotka-Volterra in continuous form.

Fisher and Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from
Metagenomic Timeseries using Sparse Linear Regression. PLoS one 9, €102451.




Supplement

LIMITS - principle

e LIMITS: Learning Interactions from Microbial Time Series
* Principle: select interaction coefficients such that change between
consecutive time points in one species is well predicted from the

other species
Vector of log abundance

y, =logx (2)-logx (1)= Zay (x,(1)- <X,->) differences for species i for
j all time point pairs (t+1,t)

y,=logx,(3)-logx,(2)= Y., (x,(2)- (x,)

_ -1
y3=logXi(4)—logXi(3):Zaij(xj(3)_<xj>) al* - yX

l interaction matrix Pseudo-inverse of
row (interactions species abundance
y, =logx(t+1)-logx (t)= Zaij(xj(t)_<xj>) between speciesi matrix of selected
! and selected predictor species
predictor species)

ni(t): 1, 6t: 1 (no noise, smallest
possible time step)

Fisher and Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from
Metagenomic Timeseries using Sparse Linear Regression. PLoS one 9, €102451.




Supplement

* Data is split into training and test set. Inference is done ¥

* Interaction matrix inference: For each species i, select . .

* Repeat data splitting and interaction matrix inference a

LIMITS — workflow

on training set, prediction error is calculated on test set. .

the set of predictor species j that minimise the error on
the test set via step-wise forward regression

Lower Error Lower Error Higher Error

) :1.l /\2\ ’Ji /“' ‘1\'&3\ (‘) “\l&(j: ‘:d‘) :1\)%:3\]\:‘:
j ) ® ; i ) \ 3 @ @ @ ® @

X[ @ @ & @ @ @) &) @ @ @) (&) @

First Step Second Step i
Species A increases growth of Species B

.z\;l ——- @\
Species A decreases growth of Species B

number of times and report the median (bootstrap) ®———®

Error measurements:

* Difference between y and X in the test set, with interaction coefficients
inferred from the training set (reported by LIMITS)

* Difference between observed time series and time series predicted with
Ricker (simulation with inferred interaction coefficients)

* Difference between known and inferred interaction matrices




Supplement

Examples of network properties

D = 2*4/(4*3)=2/3

w .

| ~ D=5/6
a

C=1

D=1

\)\\) fully connected clique

Clustering coefficient of node i
.
c,=—"
k.- (k,—1)

k = number of neighbors of node i
n = number of edges between the
neighbors of node i

Average clustering coefficient

Network density (connectance)
2 E
S S-(S-1)

E = number of edges in the network
S = number of taxa in the matrix
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Indirect edge removal: Overlap

Overlap uses the start and length of co-occurrence in time

M

No overlap = overlap

- not indirect - indirect
Ina Deutschmann
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Indirect edge removal: sigh patterns

D Taxon

Env. factor
- POsitive link

=== Negative link

8 possible sign patterns for two taxa and one environmental factor in a triplet

Sign patterns
indicating an

indirect taxon
relationship

Sign patterns
indicating a direct
taxon relationship




Supplement

Indirect edge removal: interaction information

* Interaction information indicates whether a triplet
contains an indirect edge

* Itis an assumption that the indirect edge is the taxon-
taxon edge (this is a good assumption for environmental
factors that cannot be quickly influenced by taxa, such
as temperature)

negative: redundancy zero: no interaction positive: synergy D Taxon
CI(X,Y|Z)<MI(X,Y) CI(X,Y|Z)=MI(X,Y) CI(X,Y|Z)>MI(X,Y) Env. factor
@ 9 Positive link
=== Negative link

B a 2 A B
A Cl = conditional mutual

information
MI = mutual
information

II = CI(X,Y |Z) — MI(X,Y) Il = interaction

information




EnDED: shrink the hairball

Problem: edges in microbial networks are often driven by
environmental factors

EnDED combines several methods to remove indirect edges

Entropy

& Sv) =—_ p(vi)log (p(vi)) | \__—

icrobe w Mutual Information /
Mi(v;w) = 5(v) + S(w) - S5(v,w)

./.\. Conditional Mutual Information @

remove association CMI(v;w[f) = S(v.f) + Sw,f) - S(v,w.f) - S(f)

Interaction Information
li(v,w,f) = CMI(v;w|f) - MI(v;w)

Supplement

Overlap in time Interaction Information Data Processing Inequality
Mi(v;w) < MI(v;f) and

— I(v,w,f) <0

MI(v;w) < MI(W f)

I(v,w,f) > 0 Mi(v;w) > MI( #f) o

VS
/ Mi(viw) > Mi(w; f)

Deutschmann et al. (2021) “Disentangling environmental effects in
microbial association networks” Microbiome 9, 232.

Ina Deutschmann




EnDED performance

e Accuracy assessed on simulated data (extended Lotka Volterra model)
 Method combination: lowest accuracy but highest positive predictive
value (removes fewer true edges at cost of keeping false ones)

i)
GC) ors ¢<P ¢ PP DPI: data-processing
c oo Py $é inequality (edge with
O 000  oso LA smallest mutual
= ors @ > ool information in triplet is
% E ZZZ @ @Q @ @ @ & $$ 0.00 0.25 0.50 0.75 1.00 re m Oved)
> 000 Il: Interaction
m 1.00 1.00 H . . . .
o & PP PP information (lndlocates
2% P P é @ T redundancy in triplets)
0.00 Sosol OL: overlap (time series)
. 6% ome| il SP: Sign pattern
3 ¢ S 4l
0.90 @ @ @ ¢ ¢ = - Combi: Combination

Combi DPI 1l oL 0.00 0.25 0.50 0.75 1.00

FPR
[1no noise [ noise ® Combi @DPl @Il @ OL ®SP

True positive: false edge correctly removed False positive: correct edge falsely removed
False negative: false edge not removed True negative: correct edge not removed



ENDED in action

e Blanes Bay Microbial Observatory (BBMO) data:
Mediterranean Sea sampled monthly from Jan 2004

interactions
lost

to Dec 2013

* Environmental factors measured .-B
e * 18S & 16S V4 region sequenced
GC) * Network constructed with eLSA
-  EnDED (combi) removed 8.3% of the edges
E A\ . AL " 5 out of 29
Q. known
Q.
>
)

T : it . 5 Triplet:
29,820 edges: mpositive 82.0% mnot e-d edges 91.7% number of triplets eniroment
mnegative 18.0% me-d edges 8.3% 0-1 D 3 4 5 [ meobey | mirobew

754 nodes: mnB 37.0% pB 22.4% mnE 20.7% = pE 19.9%

Taxon size fraction: nano and pico, kingdom: B=Bacteria, E=Eukaryotes
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Manta internals

D Flip-flop state
1 2 3
ﬂ ﬂ
|
Value n

Convergence in
matrix

:F-_!-H:! | B .

EET I

-1

A, C) Balanced graphs: Multiplication
and transformation (retaining signs) of
weighted adjacency matrix MCL-style
until convergence (scoring matrix)

B, D) Unbalanced graphs: no
convergence (flip-flop state)

Trick: use sub-sets of the
network to generate scoring
matrix. For balanced subsets,
follow procedure for balanced
graphs. For unbalanced
subsets, carry out only one
iteration. When merging, only
use nodes with signs consistent
across most subsets.

=> Scoring matrix
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Height

Manta internals

* Clusters derived from scoring matrix through agglomerative
clustering with Euclidean distances

* Optimal cluster number determined with sparsity score S

S = 1/E*(number of negative edges not
in clusters + number of positive edges
in clusters — number of negative edges
in clusters — number of positive edges
not in clusters)

E: total edge number

S ranges from -1 to 1, with -1 being the

AT




Mako’s data scheme

Tmber of
member_of
member_of

member of

member_of

member_of

member_of

Iocated in
4 quality_ oparticipates_in
l ’/part o quallty_zJ \

part_of




Manta internals

 Weak cluster assignments:

— Find nodes that fluctuate strongly in flip-flop
iterations: oscillators (some diagonal values of
scoring matrix)

— Compute weight of shortest path from each
node to closest oscillator

— Negative weight or weight below user-defined
threshold: node has a weak cluster assignment

 Treatment of small clusters: clusters in size below threshold
are removed from scoring matrix and cluster membership of
their nodes is assigned based on average shortest path
weight to cluster members

Supplement



