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effects could lie at the basis of this observation,
which contrasts with other free-living autotrophs
represented in the network (cyanobacteria and
prymnesiophytes), which display primarily pos-
itive associations (Fig. 2A).
Cross-kingdom associations between Bacteria

and Archaea were limited to 24 mutual exclu-
sions.Within Archaea, Thermoplasmatales (Marine
Group II) co-occur with several phytoplankton

clades. Links between Bacteria and protists re-
covered five out of eight recently discovered in-
teractions from protist single-cell sequencing
(50). Associations between Diatoms and Flavo-
bacteria agreed with their described symbioses
(51). We also observed co-ocurrence of uncul-
tured dinoflagellates with members of Rhodo-
bacterales (Ruegeria), which is in agreement with
a symbiosis between Ruegeria sp. TM1040 and

Pfiesteria piscicida around the ability of Ruegeria
to metabolize dinoflaggelate-produced dimethyl-
sulfoniopropionate (52).

Global versus local associations

We further investigated whether our network
was driven by global trends or is defined by
local signals. To this aim, we divided our set of
samples into seven main regions—Mediterranean
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Fig. 3.Top-down interactions in plankton. (A) Three different dinoflagellate specimens
from Tara samples display an advanced infectious stage by syndiniales parasites. The
cross-section of the cell shows the typical folded structure of the parasitoid chain, which
fills the entire host cell. Each nucleus (blue) of the coiled ribbon corresponds to a future free-living parasite. DNA is stained with Hoechst (dark blue), membranes
are stained with DiOC6 (green), and specimen surface is light blue. Scale bar, 5 mm. (B) Subnetwork of metanodes that encapsulate barcodes affiliated to
parasites or PFTs. The PFTs mapped onto the network are: phytoplankton DMS producers, mixed phytoplankton, phytoplankton silicifiers, pico-eukaryotic
heterotrophs, proto-zooplankton and meso-zooplankton. Edge width reflects the number of edges in the taxon graph between the corresponding metanodes.
Over-represented links (multiple-test corrected P < 0.05) are colored in green if they represent copresences and in red if they represent exclusions; gray means
non-overrepresented combinations. When both copresences and exclusions were significant, the edge is shown as copresence. (C) Parasite connections within
micro- and zooplankton groups. (D) Number of hosts per phage. (Inset) Phage associations to bacterial (target) phyla. (E) Putative Bacteroidetes viruses detected
with co-occurence and detection in a single-cell genome (SAG). On the left are viral sequences from a Flavobacterium SAG (top) and Tara Oceans virome
(bottom), displaying an average of 89% nucleotide identity. On the right is the correspondence between the ribosomal genes detected in the same SAG (top) and
the 16S sequence associated to the Tara Oceans contig based on co-occurence (79% nucleotide identity). For clarity, a subset of contig ARTD0100013 only (from
10,000 to 16,000 nucleotides) is displayed. This sequence was also reverse-complemented. PurM, phosphoribosylaminoimidazole synthetase; DNA Pol. A, DNA
polymerase A.
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~90% of all OTUs and reads, respectively (Fig.
3C). Among these, the only permanently photo-
trophic taxa were diatoms (Fig. 4A) and about
one-third of dinoflagellates (Fig. 4, B to F), to-
gether comprising ~15 and ~13% of hyperdiverse
OTUs and reads, respectively (30). Most hyper-
diverse photic-zone plankton belonged to three
supergroups—the Alveolata, Rhizaria, and Excavata
—about which we have limited biological or
ecological information. The Alveolata, which con-
sistmostly of parasitic [marine alveolates (MALVs)]
(Fig. 4F) and phagotrophic (ciliates and most
dinoflagellates) taxa, were by far themost diverse
supergroup, comprising ~42% of all assignable
OTUs. The Rhizaria are a group of amoeboid he-
terotrophic protists with active pseudopods dis-
playing a broad spectrum of ecological behavior,
from phagotrophy to parasitism and mutualism
(symbioses) (31). Rhizarian diversity peaked in

the Retaria (Fig. 4, C and D) a subgroup includ-
ing giant protists that build complex skeletons of
silicate (Polycystinea), strontium sulfate (Acan-
tharia) (Fig. 4C), or calcium carbonate (Forami-
nifera) and thus comprise key microfossils for
paleoceanography. Unsuspected rDNA diversity
was recorded within the Collodaria (5636 OTUs),
polycystines that are mostly colonial, poorly
silicified, or naked and live in obligatory symbi-
osis with photosynthetic dinoflagellates (Fig. 4D)
(32, 33). Arguably, the most surprising compo-
nent of novel biodiversity was the >12,300 OTUs
related to reference sequences of diplonemids,
an excavate lineage that has only two described
genera of flagellate grazers, one of which para-
sitizes diatoms and crustaceans (34, 35). Their
ribosomal diversity was not only much higher
than that observed in classical plankton groups
such as foraminifers, ciliates, or diatoms (50-fold,

6-fold, and 3.8-fold higher, respectively) but was
also far from richness saturation (Fig. 3E). Eu-
karyotic rDNA diversity peaked especially in the
few lineages that extend across larger size frac-
tions (i.e., metazoans, rhizarians, dinoflagellates,
ciliates, diatoms) (Fig. 3E). Larger cells or colonies
not only provide protection against predation via
size-mediated avoidance and/or construction
of composite skeletons but also provide support
for complex and coevolving relationships with of-
ten specialized parasites ormutualistic symbionts.
Beyond this hyperdiverse, largely heterotrophic

eukaryotic majority, our data set also highlighted
the phylogenetic diversity of poorly known pha-
gotrophic (e.g., 413 OTUs of Katablepharidophyta,
240 OTUs of Telonemia), osmotrophic (e.g., 410
OTUs of Ascomycota, 322 OTUs of Labyrinthu-
lea), and parasitic (e.g., 384 OTUs of gregarine
apicomplexans, 160 OTUs of Ascetosporea, 68
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Fig. 4. Illustration of key eukaryotic plankton lineages. (A) Stramenopila;
a phototrophic diatom Chaetoceros bulbosus, with its chloroplasts in red
(arrowhead). Scale bar, 10 mm. (B) Alveolata; a heterotrophic dinoflagellate
Dinophysis caudata harboring kleptoplasts [in red (arrowhead)]. Scale bar,
20 mm (75). (C) Rhizaria; an acantharian Lithoptera sp. with endosymbiotic
haptophyte cells from the genus Phaeocystis [in red (arrowhead)]. Scale bar,
50 mm (41). (D) Rhizaria; inside a colonial network of Collodaria, a cell sur-
rounded by several captive dinoflagellate symbionts of the genus Brandtodi-
nium (arrowhead). Scale bar, 50 mm (33). (E) Opisthokonta; a copepod whose
gut is colonized by the parasitic dinoflagellate Blastodinium [red area shows
nuclei (arrowhead)]. Scale bar, 100 mm (51). (F) Alveolata; a cross-sectioned,

dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV-II).
Each blue spot (arrowhead) is the nucleus of future free-living dinospores;
their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
bar, 5 mm. The cellular membranes were stained with DiOC6 (green); DNA
and nuclei were stained with Hoechst (blue) [the dinoflagellate theca in (B)
was also stained by this dye]. Chlorophyll autofluorescence is shown in red
[except for in (E)]. An unspecific fluorescent painting of the cell surface (light
blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
(Bitplane).
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their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
bar, 5 mm. The cellular membranes were stained with DiOC6 (green); DNA
and nuclei were stained with Hoechst (blue) [the dinoflagellate theca in (B)
was also stained by this dye]. Chlorophyll autofluorescence is shown in red
[except for in (E)]. An unspecific fluorescent painting of the cell surface (light
blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
(Bitplane).

~90% of all OTUs and reads, respectively (Fig.
3C). Among these, the only permanently photo-
trophic taxa were diatoms (Fig. 4A) and about
one-third of dinoflagellates (Fig. 4, B to F), to-
gether comprising ~15 and ~13% of hyperdiverse
OTUs and reads, respectively (30). Most hyper-
diverse photic-zone plankton belonged to three
supergroups—the Alveolata, Rhizaria, and Excavata
—about which we have limited biological or
ecological information. The Alveolata, which con-
sistmostly of parasitic [marine alveolates (MALVs)]
(Fig. 4F) and phagotrophic (ciliates and most
dinoflagellates) taxa, were by far themost diverse
supergroup, comprising ~42% of all assignable
OTUs. The Rhizaria are a group of amoeboid he-
terotrophic protists with active pseudopods dis-
playing a broad spectrum of ecological behavior,
from phagotrophy to parasitism and mutualism
(symbioses) (31). Rhizarian diversity peaked in

the Retaria (Fig. 4, C and D) a subgroup includ-
ing giant protists that build complex skeletons of
silicate (Polycystinea), strontium sulfate (Acan-
tharia) (Fig. 4C), or calcium carbonate (Forami-
nifera) and thus comprise key microfossils for
paleoceanography. Unsuspected rDNA diversity
was recorded within the Collodaria (5636 OTUs),
polycystines that are mostly colonial, poorly
silicified, or naked and live in obligatory symbi-
osis with photosynthetic dinoflagellates (Fig. 4D)
(32, 33). Arguably, the most surprising compo-
nent of novel biodiversity was the >12,300 OTUs
related to reference sequences of diplonemids,
an excavate lineage that has only two described
genera of flagellate grazers, one of which para-
sitizes diatoms and crustaceans (34, 35). Their
ribosomal diversity was not only much higher
than that observed in classical plankton groups
such as foraminifers, ciliates, or diatoms (50-fold,

6-fold, and 3.8-fold higher, respectively) but was
also far from richness saturation (Fig. 3E). Eu-
karyotic rDNA diversity peaked especially in the
few lineages that extend across larger size frac-
tions (i.e., metazoans, rhizarians, dinoflagellates,
ciliates, diatoms) (Fig. 3E). Larger cells or colonies
not only provide protection against predation via
size-mediated avoidance and/or construction
of composite skeletons but also provide support
for complex and coevolving relationships with of-
ten specialized parasites ormutualistic symbionts.
Beyond this hyperdiverse, largely heterotrophic

eukaryotic majority, our data set also highlighted
the phylogenetic diversity of poorly known pha-
gotrophic (e.g., 413 OTUs of Katablepharidophyta,
240 OTUs of Telonemia), osmotrophic (e.g., 410
OTUs of Ascomycota, 322 OTUs of Labyrinthu-
lea), and parasitic (e.g., 384 OTUs of gregarine
apicomplexans, 160 OTUs of Ascetosporea, 68
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Fig. 4. Illustration of key eukaryotic plankton lineages. (A) Stramenopila;
a phototrophic diatom Chaetoceros bulbosus, with its chloroplasts in red
(arrowhead). Scale bar, 10 mm. (B) Alveolata; a heterotrophic dinoflagellate
Dinophysis caudata harboring kleptoplasts [in red (arrowhead)]. Scale bar,
20 mm (75). (C) Rhizaria; an acantharian Lithoptera sp. with endosymbiotic
haptophyte cells from the genus Phaeocystis [in red (arrowhead)]. Scale bar,
50 mm (41). (D) Rhizaria; inside a colonial network of Collodaria, a cell sur-
rounded by several captive dinoflagellate symbionts of the genus Brandtodi-
nium (arrowhead). Scale bar, 50 mm (33). (E) Opisthokonta; a copepod whose
gut is colonized by the parasitic dinoflagellate Blastodinium [red area shows
nuclei (arrowhead)]. Scale bar, 100 mm (51). (F) Alveolata; a cross-sectioned,

dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV-II).
Each blue spot (arrowhead) is the nucleus of future free-living dinospores;
their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
bar, 5 mm. The cellular membranes were stained with DiOC6 (green); DNA
and nuclei were stained with Hoechst (blue) [the dinoflagellate theca in (B)
was also stained by this dye]. Chlorophyll autofluorescence is shown in red
[except for in (E)]. An unspecific fluorescent painting of the cell surface (light
blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
(Bitplane).
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Dinophysis caudata harboring kleptoplasts [in red (arrowhead)]. Scale bar,
20 mm (75). (C) Rhizaria; an acantharian Lithoptera sp. with endosymbiotic
haptophyte cells from the genus Phaeocystis [in red (arrowhead)]. Scale bar,
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Each blue spot (arrowhead) is the nucleus of future free-living dinospores;
their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
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blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
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Dinoflagellate with 
kleptoplasts

Images taken from de Vargas et al. Science 348, 1261605 (2015).
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Ecological interactions
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Network representation of microbial communities

Who is there and with 
which abundance?

Primary fermenters

Methanogen

Acetogen

Sulfate reducer

Who interacts with whom?
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Diamond, J. (1975) “Assembly of species communities”, pp. 342-444 in “Ecology and evolution of 
communities” edited by Cody and Diamond, Harvard University Press.

• Jared Diamond suggested assembly rules: 
• Rule e: “Some pairs of species never coexist, either by themselves 
or as part of a larger combination.”
• Competition between species can be inferred from their 
presences/absences across habitats (checkerboard pattern)

History of co-occurrence analysis in ecology
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• Connor & Simberloff: “We challenge Diamond’s idea that 
island species distributions are determined by competition 
[...]. In order to demonstrate that competition is responsible 
for the joint distributions of species, one would have to falsify 
a null hypothesis stating that the distributions are generated 
by the species randomly [...]”

• Importance of a null model

Connor & Simberloff (1979) “The Assembly Of Species Communities: Chance or Competition”, Ecology, 
6061, 1132-1140.

History of co-occurrence analysis in ecology cont’d
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Co-occurrence analysis is network inference 
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Microbial association network
Nodes: taxa (OTUs, genera, ...) or 
metadata (pH, temperature, …)
Edges: significant associations
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Principle of similarity-based network inference

location or time

ta
xa

 a
nd

 b
in

ar
y 

en
vi

ro
nm

en
ta

l t
ra

its
A
B
C
D

1    2    3    4    5    6    

abundances

location or timeta
xa

 a
nd

 e
nv

iro
nm

en
ta

l t
ra

its

A
B
C
D

1    2    3    4    5    6    

presences/absences 
(incidences)

INPUT

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e

10



location or time

ta
xa

 a
nd

 b
in

ar
y 

en
vi

ro
nm

en
ta

l t
ra

its
A
B
C
D

1    2    3    4    5    6    

abundances

location or timeta
xa

 a
nd

 e
nv

iro
nm

en
ta

l t
ra

its

A
B
C
D

1    2    3    4    5    6    

presences/absences 
(incidences)

for each possible 
taxon pair, compute 
similarity score

symmetric
similarity 
matrix

INPUT SCORING

A
B
C
D

A   B    C   D

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e
Principle of similarity-based network inference

11



location or time

ta
xa

 a
nd

 b
in

ar
y 

en
vi

ro
nm

en
ta

l t
ra

its
A
B
C
D

1    2    3    4    5    6    

abundances

location or timeta
xa

 a
nd

 e
nv

iro
nm

en
ta

l t
ra

its

A
B
C
D

1    2    3    4    5    6    

presences/absences 
(incidences)

for each possible 
taxon pair, compute 
similarity score

repeat scoring step many 
times with randomized data

Score distribution in randomized data

Scores

Fr
eq
ue
nc
y

-1.0 -0.5 0.0 0.5 1.0

0
20

40
60

80

calculate p-values from the 
random score distribution, 
correct for multiple testing 
and discard relationships 
with p-values above a 
specified threshold

symmetric
similarity 
matrix

INPUT SCORING ASSESSMENT OF 
SIGNIFICANCE (Null 
model)

A
B
C
D

A   B    C   D

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e
Principle of similarity-based network inference

12



location or time

ta
xa

 a
nd

 b
in

ar
y 

en
vi

ro
nm

en
ta

l t
ra

its
A
B
C
D

1    2    3    4    5    6    

abundances

location or timeta
xa

 a
nd

 e
nv

iro
nm

en
ta

l t
ra

its

A
B
C
D

1    2    3    4    5    6    

presences/absences 
(incidences)

for each possible 
taxon pair, compute 
similarity score

repeat scoring step many 
times with randomized data

Score distribution in randomized data

Scores

Fr
eq
ue
nc
y

-1.0 -0.5 0.0 0.5 1.0

0
20

40
60

80

calculate p-values from the 
random score distribution, 
correct for multiple testing 
and discard relationships 
with p-values above a 
specified threshold

D

A

visualize 
taxon pairs 
with 
significant 
scores as a 
network 

B

positive
negative

symmetric
similarity 
matrix

INPUT SCORING ASSESSMENT OF 
SIGNIFICANCE (Null 
model)

VISUALIZATION

A
B
C
D

A   B    C   D

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e
Principle of similarity-based network inference

13



Challenges

• What are the challenges of microbial network inference?



Problem 1: Varying sequencing depth
Shallowly sequenced sample Deeply sequenced sample
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Technical variability

Read count != 
cell count



Varying sequencing depth leads to spurious 
correlations
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Removal of sequencing depth bias

Normalization: Convert counts into 
relative abundances (proportions) => 
counts are lost, no additional zeros

Rarefaction: Select beads from the 
big bucket with a probability equal 
to their proportion, until selected 
bead number is the same as in the 
small bucket
=> Additional zeros can be 
introduced, counts are preserved
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Rarefaction/normalization: compositionality
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How to deal with compositionality

• Quantify total cell 
counts, e.g. using 
flow cytometry

• Transform data e.g. 
using centered log ratio 
transformation 

• Use compositional-
robust measures such 
as Aitchison distance or 
Bray Curtis dissimilarity

OR

ÞWorking with log ratios poses a zero treatment problem
ÞRelative abundances can be multiplied with cell counts, 

solving compositionality issue experimentally
ÞBut: if cell counts do not depend on microbial interactions, 

they are a confounder driving associations, so it depends M
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Problem 2: The challenge of rare taxa

Challenge #4: How to deal with
environmental factors?

Microbial community composition is strongly influenced by
environmental factors such as pH, moisture, oxygen levels,
and nutrients. In most systems, these will vary across
samples, and microbes will respond to these changes. It is
thus difficult to determine whether an edge in a microbial
network is due to a common response to an environmental
factor (or a third taxon) or represents a direct interaction
between two taxa. Several methods exist to deal with the
environmental impact (summarized in Fig. 2). The easiest is
to include environmental factors as additional nodes and to
compute their associations with microbial taxa (Fig. 2c).
This is implemented in tools such as CoNet [20] and
FlashWeave [21] and in the best cases shows how the
environment structures microbial community composition.
Another strategy is to split samples into groups, either
through sample-wise clustering or according to a key vari-
able such as water depth or health status and to build net-
works for each sample group separately (e.g., [9, 22], see
Fig. 2d). Since the environment is more homogeneous
within groups, group-specific networks will have fewer
edges due to environmental variation. In extreme cases,
taxon presence/absence is entirely due to environmental
factors. In these cases, ignoring matching zeros when
computing associations, as implemented in FlashWeave’s
HE mode, is equivalent to splitting samples into groups.
This shows that the problem of environmental heterogeneity
is closely linked with the previous challenge of rare taxa; a
taxon may only be rare because it belongs to an environ-
ment that is underrepresented among the samples. In addi-
tion to the environment-as-node and sample-grouping

strategies, another method is to regress out environmental
factors and to infer associations in the residual abundances
that are supposedly free of environmental influence [23]
(Fig. 2e). However, many species respond nonlinearly to
environmental parameters, i.e., they have an optimal range
and decline in growth when the parameter changes beyond
that range. Although regression can be extended to handle
such nonlinearities, this increases the risk of overfitting the
data. Finally, environmentally induced indirect edges can be
filtered after network construction (Fig. 2f), for instance, by
removing the edge with the lowest mutual information in
each fully connected triplet of nodes [9, 24].

Given this range of strategies, which one is the best to
deal with environmental influence? The optimal strategy
depends on the data and the research question. If the goal is
to investigate whether and how the community composition
is affected by environmental factors, the environment-as-
node strategy can suggest candidate taxa sensitive to spe-
cific environmental factors. If in contrast the goal is the
inference of biotic interactions, then the environment should
be as homogeneous as possible, by stratifying samples or
better, by experimental design; the experiment needs to be
designed such that biotic interaction detection is possible. If
the sampling process aggregates distinct microhabitats, then
the network cannot capture biotic interactions specific to a
microhabitat.

In case of heterogeneous environments without strong
sample-wise clustering, the environment-as-node strategy
can be combined with indirect edge filtering or the regres-
sion technique can be employed. Since a systematic eva-
luation of these different techniques is still missing, the
fourth challenge is to evaluate different strategies to deal
with environmental confounders.

Fig. 1 Filtering options for
rare taxa. a Microbial count
tables are usually zero-rich. b
The prevalence filter removes
taxa with too many zeros, while
c the taxon pair filter forbids
associations between taxon pairs
with too many matching zeros.
The garbage icon represents the
sum of the filtered taxa. Both
filters necessitate choosing a
threshold.

Open challenges for microbial network construction and analysis

• Microbial abundance tables are zero-rich
• Ambiguity of the zero: taxon may be absent or 

present below detection level (sampling and 
sequencing depth)

• Ignoring zeros (e.g. in log-ratio transformations) 
is a loss of information but not treating zeros 
can lead to spurious associations 

• Currently: ad-hoc filters on taxon absences 
(prevalence filter) or taxon pairs (number of 
matching zeros); upper bound on zero number 
above which statistical tests are no longer 
meaningful (Cougoul et al.)

Cougoul et al. (2019) “Rarity of microbial species: in search of reliable associations.” 
PLoS ONE 14, e0200458. Challenge #4: How to deal with

environmental factors?

Microbial community composition is strongly influenced by
environmental factors such as pH, moisture, oxygen levels,
and nutrients. In most systems, these will vary across
samples, and microbes will respond to these changes. It is
thus difficult to determine whether an edge in a microbial
network is due to a common response to an environmental
factor (or a third taxon) or represents a direct interaction
between two taxa. Several methods exist to deal with the
environmental impact (summarized in Fig. 2). The easiest is
to include environmental factors as additional nodes and to
compute their associations with microbial taxa (Fig. 2c).
This is implemented in tools such as CoNet [20] and
FlashWeave [21] and in the best cases shows how the
environment structures microbial community composition.
Another strategy is to split samples into groups, either
through sample-wise clustering or according to a key vari-
able such as water depth or health status and to build net-
works for each sample group separately (e.g., [9, 22], see
Fig. 2d). Since the environment is more homogeneous
within groups, group-specific networks will have fewer
edges due to environmental variation. In extreme cases,
taxon presence/absence is entirely due to environmental
factors. In these cases, ignoring matching zeros when
computing associations, as implemented in FlashWeave’s
HE mode, is equivalent to splitting samples into groups.
This shows that the problem of environmental heterogeneity
is closely linked with the previous challenge of rare taxa; a
taxon may only be rare because it belongs to an environ-
ment that is underrepresented among the samples. In addi-
tion to the environment-as-node and sample-grouping

strategies, another method is to regress out environmental
factors and to infer associations in the residual abundances
that are supposedly free of environmental influence [23]
(Fig. 2e). However, many species respond nonlinearly to
environmental parameters, i.e., they have an optimal range
and decline in growth when the parameter changes beyond
that range. Although regression can be extended to handle
such nonlinearities, this increases the risk of overfitting the
data. Finally, environmentally induced indirect edges can be
filtered after network construction (Fig. 2f), for instance, by
removing the edge with the lowest mutual information in
each fully connected triplet of nodes [9, 24].

Given this range of strategies, which one is the best to
deal with environmental influence? The optimal strategy
depends on the data and the research question. If the goal is
to investigate whether and how the community composition
is affected by environmental factors, the environment-as-
node strategy can suggest candidate taxa sensitive to spe-
cific environmental factors. If in contrast the goal is the
inference of biotic interactions, then the environment should
be as homogeneous as possible, by stratifying samples or
better, by experimental design; the experiment needs to be
designed such that biotic interaction detection is possible. If
the sampling process aggregates distinct microhabitats, then
the network cannot capture biotic interactions specific to a
microhabitat.

In case of heterogeneous environments without strong
sample-wise clustering, the environment-as-node strategy
can be combined with indirect edge filtering or the regres-
sion technique can be employed. Since a systematic eva-
luation of these different techniques is still missing, the
fourth challenge is to evaluate different strategies to deal
with environmental confounders.

Fig. 1 Filtering options for
rare taxa. a Microbial count
tables are usually zero-rich. b
The prevalence filter removes
taxa with too many zeros, while
c the taxon pair filter forbids
associations between taxon pairs
with too many matching zeros.
The garbage icon represents the
sum of the filtered taxa. Both
filters necessitate choosing a
threshold.

Open challenges for microbial network construction and analysis

Ad-hoc solution: Prevalence filter

The problem of co-absences

Garbage 
taxon

P
Presence in at least       50% of samples

Pearson’s r: 1, p-value < 1E-15
Spearman’s rho: 1, p-value < 1E-15
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• Indirect edge: a spurious edge introduced by the 
response of two taxa to a third factor (another taxon or an 
environmental factor)

• “correlation is not causation”

Problem 3: Indirect edges

PO4

OTU A OTU BIndirect edge

rarer phyla never had abundances of !10% (see Table S1A
in the supplemental material). It is also important to note
that the primer 338R has some biases, especially toward the
Verrucomicrobia, Planctomycetes, and Chlamydiae, which are
routinely found using universal primers but were found in
low abundance in this study. Although many other studies
have made a similar observation, it is still noteworthy given
that all bacterial phyla are phylogenetically diverse yet there
also must be broad metabolic differences between these
phyla that allow some phyla to dominate in soil while others
nearly always remain quite rare.

Although each of the five dominant phyla had similar aver-
age levels of diversity within individual soils (see Table S2 in
the supplemental material), the Acidobacteria and Actinobac-
teria were more diverse across the entire sample set than the
proteobacterial and Bacteroidetes phyla (Fig. 1). These differ-
ences may be due to the strong pH influence on acidobacterial
and actinobacterial community composition, whereby the rel-
ative abundances of certain taxa within these groups were
strongly influenced by changes in soil pH (Fig. 2; see Table S1B
in the supplemental material), with soils of distinct pH levels
exhibiting minimal taxon co-occurrence.

FIG. 5. Correlations between relative abundances of the five dominant bacterial phyla and soil pH. Pearson correlation coefficients (r) are
shown for each taxon, with the associated Bonferroni-corrected P values.
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Environmental factor

Abundance
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Challenge #5: What about higher-order
interactions (HOIs)?

According to a stringent definition, an HOI is an interaction
between a number of species that is altered by an additional
species [25]. For instance, if one microbe depends on a
molecule secreted by another, and a third microbe produces
the same molecule, the cross-feeding relationship between
the first two microbes is weakened. HOIs affect community
stability and diversity in simulations [26, 27] and were
shown to alter host fitness in experiments [28]. HOIs can be
detected by measuring growth curves of species pairs and
parameterizing a HOI-free model on these data. Deviations
of model predictions from community behavior may then
indicate the presence of HOIs (e.g., refs. [28, 29]). How-
ever, since the HOI-free model may fail to predict obser-
vations for other reasons than the presence of HOIs, this
approach is not guaranteed to identify HOIs in the narrow
sense of modified interactions [25].

Most microbial network construction tools neglect HOIs.
Previously, the principle of entropy maximization (finding
correlations such that an entropy function is maximized) has
been employed to infer HOIs between genes from gene
expression data [30]. It is an open question whether entropy
maximization could also infer HOIs from microbial

abundance data. In presence/absence of data, association
rule mining can uncover logical rules that can be interpreted
as HOIs. An example for such a rule is a species A that is
only found in the presence of two species B and C, for
instance, because it needs two cofactors produced by B and
C, respectively. In this case, the interaction between A and
B or A and C is nonexistent until the arrival of the third
species, which can be seen as an extreme case of interaction
modification. Although a few association rules involving
more than two microbial taxa have been reported previously
[31], it is not clear whether these are due to overfitting (a
challenge for all HOI inference algorithms), environmental
factors, combinations of pair-wise associations, or true
HOIs. Finally, visualizing HOIs is not trivial and requires
hypergraphs, i.e., networks where an edge connects more
than two nodes. Interpreting and analyzing such hyper-
graphs are additional open challenges of HOIs.

Challenge #6: How to evaluate microbial
network construction in silico?

Evaluations are carried out to assess which tools infer the
most accurate networks and to explore how sample number
and other data properties affect tool performance. Given the

Fig. 2 Treatment of environmental heterogeneity. a Taxa respond
to environmental factors such as pH. b A common response to
environmental factors introduces indirect edges in the microbial net-
work. To deal with this challenge, c environmental factors can be
integrated during network construction and considered when inter-
preting the network, d samples can be stratified, either manually or
through clustering techniques, and a network constructed per sample

group, e the impact of environmental factors on taxon abundances can
be removed before network construction through regression (often
implemented assuming linear environmental response functions), and f
the network can be filtered to remove indirect edges after construction,
for instance, using data processing inequality [24] or network decon-
volution [49].

K. Faust

1) 2) 3) 4)

Environmentally induced indirect edges: 
Possible solutions

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e:
 C

ha
lle

ng
es

22

Faust (2021) “Open challenges for microbial network construction and analysis.” The 
ISME Journal 15, 3111-3118.

Problem with third solution: non-linear dependencies of taxon 
abundance on environmental factors (optima)



Environmentally induced indirect edges continued
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Sample heterogeneity

Indirect edges in inferred 
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Chesson (2000) “Mechanisms of Maintenance of Species Diversity” 31, 343-366.
Armitage & Jones (2019) “How sample heterogeneity can obscure the signal of microbial 
interactions” The ISME Journal 13, 2639-2646.

• Edges may differ depending on 
sampling scale
• Storage effect: variability at the 
microscale allows survival of 
competing species (one or the other 
dominates locally, but both co-occur 
globally)
• Problem of experimental design

24

Sample 1          Sample 2            Sample 3

Inferred edge is negative within a sample 
but positive across the samples



Sampling scale: example

submerged paddy environment is full of aerobic, anoxic and
anaerobic macro-/micro-sites, layers and interfaces
(Ponnamperuma, 1972). Such a heterogeneous environment per-
mits microbial aerobic respiration and fermentation to occur
simultaneously and allows metal/sulphur oxidation/reduction cy-
cles to complete. Regarding the taxa in specific modules, as
described in the next two paragraphs, we found that their pheno-
typic properties were closely linked and were highly associated
with distinct soil processes that requires joint efforts. Here, we
considered only three-tool-agreed modules (Fig. 1a and c).

The modules CoNet-A, MENA-A and eLSA-A (Fig. 1a) exhibited a
common feature: their members were either aerobes or facultative

anaerobes with fermentative metabolism, despite their phyloge-
netic distances. CoNet-A consisted of nine nodes belonging to five
defined genera, five of which represented cultivable species. The
genera Pseudomonas, Moraxella (g-Proteobacteria), and Janthino-
bacterium (d-Proteobacteria) are common in their strictly aerobic
and chemoorganotrophic metabolisms (Palleroni, 2005). The
genera Lactococcus and Leuconostoc (Bacilli) are common in their
facultative anaerobic and fermentative growth. The module eLSA-A
was nearly identical to module CoNet-A in node composition, with
only one additional node assignable to class d-Proteobacteria.
MENA-A had five more additional nodes belonging to four genera.
These nodes were either aerobic or facultative as well. Brochothrix

Fig. 2. Growth curve of each species in monoculture, two-species and three-species co-culture. The small incerted figures shows closeup details of y-axis. The bottom-right panel
summarizes the results, where lines with arrows represent edges and their directions in the observed co-culture experiments. Green lines represent positive edges and black lines
represent negetive edges. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

H. Wang et al. / Soil Biology & Biochemistry 105 (2017) 227e235232

Fig. 1. Three-tool-agreed modules and intersection networks. (a): Modules representing an association between aerobic respiration and fermentation. (b): Intersection networks
capturing the edges (with a blue-coloured thick rim) that represent modules in panel (a) at various taxonomic levels. (c): Modules representing an association that completes metal/
sulphur oxidation and reduction cycles. Nodes not assignable to species are labeled with the names of higher taxonomic ranks. Node colors in (a) and (c) represent orders. “〈¼¼〉”
indicates equivalence in node compositions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

H. Wang et al. / Soil Biology & Biochemistry 105 (2017) 227e235 231

Fig. 1. Three-tool-agreed modules and intersection networks. (a): Modules representing an association between aerobic respiration and fermentation. (b): Intersection networks
capturing the edges (with a blue-coloured thick rim) that represent modules in panel (a) at various taxonomic levels. (c): Modules representing an association that completes metal/
sulphur oxidation and reduction cycles. Nodes not assignable to species are labeled with the names of higher taxonomic ranks. Node colors in (a) and (c) represent orders. “〈¼¼〉”
indicates equivalence in node compositions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

H. Wang et al. / Soil Biology & Biochemistry 105 (2017) 227e235 231

Positive association predicted Negative interaction found

• Local competition hidden by shared niche preference 

Tool: MENA

Tool: CoNet

Wang et al. (2017) “Combined use of network inference tools identifies ecologically 
meaningful bacterial associations in a paddy soil” Soil Biology & Biochemistry 105, 227-235.M
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Which microbial network inference tools are 
available and how do they work?

Tools

SPIEC-EASI

FlashWeave



CoNet
• Different measures (Pearson, Spearman, Bray Curtis, ...) 

capture different types of relationships, but they converge 
when thresholds are increased

• Ensemble: measures make different mistakes, but tend to 
agree on correct result, so combine them

Faust & Raes (2012) “Microbial interactions: from networks to models.” Nature Reviews Microbiology 
10 (8), 538-550.
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CoNet: Overview

Pearson

Spearman

Bray-Curtis

Initial multi-graph
Only measure-specific edges above 
user-selected thresholds keptP-value computation, 

p-value merge with 
Fisher’s or Brown’s 
method, multiple 
testing correction with 
Benjamini-Hochberg, 
only significant edges 
kept 

Final graph

Rare taxa are discarded, 
but their sum is kept as 
an additional row (rare= 
arbitrary prevalence cut-
off).
Counts are converted 
into relative abundances 
(normalization).

Raw taxon 
count matrix

Edge score 
computation

Computation of all 
pair-wise scores for 
all selected 
measures 
(similarities, 
dissimilarities, 
correlations)

Assessment of significance

Relative abun-
dance matrix

Preprocessing
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bootstrap 
distribution

renormalized 
permutation 
distribution

significantnot significant

score score

• Edge- and measure-specific p-value is computed with a Z-test:
probability of the permutation distribution mean given the (normally 
distributed) bootstrap distribution

• Renormalization to reduce compositionality bias

CoNet: P-value computation (CCREPE)

Faust*, Sathirapongsasuti* et al. “Microbial Co-occurrence Relationships in the Human Microbiome.” 
PLoS Computational Biology 8, e1002606, 2012.
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• CoNet is available on command line and as a Cytoscape app (versions 2.X and 3.X) 
• CoNet page: http://msysbiology.com/conet
• Cytoscape app: http://apps.cytoscape.org/apps/conet
• R implementation of core functions: https://hallucigenia-sparsa.github.io/seqgroup

Faust & Raes (2016). “CoNet app: inference of biological association networks using Cytoscape” 
F1000Research 5:1519

CoNet: Implementation

Co-developers & contributors
Fah Sathirapongsasuti
Jean-Sébastien Lerat
Gipsi Lima-Mendez
Jeroen Raes

> 29,700 downloads from 
Cytoscape app store
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SPIEC-EASI

Kurtz et al. (2015) “Sparse and Compositionally Robust Inference of Microbial Ecological 
Networks” PLoS Computational Biology 11(5), e1004226.

Image taken from: https://stamps.mbl.edu/images/f/f0/STAMPS_Network_1.pdf 
(Christian Mueller)M
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SPIEC-EASI: Sparse graphical models

Source: http://www.inference.org.uk/mackay/humble.pdf

Intuitive example by David MacKay:

• SPIEC-EASI estimates the inverse covariance matrix, such that resulting 
network has fewer indirect edges

• Zero in the inverse covariance matrix: conditional independence
• Assumptions: data are multivariate normally distributed and all relevant 

variables are taken into consideration 

Covariance matrix Inverse covariance matrix

Weights (nodes) connected by 
springs (edges)
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Sparse = few 
non-zero entries 
in the inverse 
covariance 
matrix = few 
edges



SPIEC-EASI: Meinshausen & Bühlmann

		 
β̂ i ,λ = argmin

β∈!p−1
(1
n
Z i − Z¬iβ

2
+λ β

1
)

Data Z (log-ratio 
transformed) 

A
B
C
D

1    2    3    4    5    6    

Zi Zall_but_i

B   C    DA

One of SPIEC-EASI’s methods to infer the inverse covariance matrix: 
Meinshausen & Bühlmann method (neighborhood selection) 

Penalty parameter

Sample numberSpecies number Regression coefficients

Result: matrix of regression coefficients; is symmetrised 
Edge = non-zero regression coefficient
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• StARS: Stability Approach to Regularization Selection
• Bootstrap technique: Repeat network construction a 

number of times with 80% of the samples (bootstrap 
iteration number = rep.num parameter)

• Purpose: select penalty parameter λ such that the number 
of edges present across bootstrap iterations is maximized

• Stability means here: stable with respect to small changes in 
the data

SPIEC-EASI: Stability-based model selection
M

ic
ro

bi
al

 n
et

w
or

k 
in

fe
re

nc
e:

 To
ol

s

34



FlashWeave

• SPIEC-EASI’s main weakness: does 
not take environmental data into 
account

• "FlashWeave = SPIEC-EASI + 
metadata”: clr-transforms data and 
exploits conditional independence 
to reduce indirect edge number, 
taking metadata into account 
(algorithm: si-HITON-PC)

• Implemented in Julia

Tackmann, Rodrigues and van Mering (2019): “Rapid Inference of Direct Interactions in Large-Scale 
Ecological Networks from Heterogeneous Microbial Sequencing Data” Cell Systems 2019.08.002.

Report

Rapid Inference of Direct Interactions in Large-Scale
Ecological Networks from Heterogeneous Microbial
Sequencing Data

Graphical Abstract

Highlights
d FlashWeave infers direct associations, resulting in sparse,

interpretable networks

d The method’s flexible graphical model framework scales to

500,000+ samples

d It integrates environmental & technical factors; adjusts for

specific latent signals

d An extensive human gutmicrobial network reveals patterns of

biological interest

Authors

Janko Tackmann,

João Frederico Matias Rodrigues,

Christian von Mering

Correspondence
mering@imls.uzh.ch

In Brief
Spurious associations and computational

complexity currently hinder ecological

network inference from cross-study

metagenomic data. Tackmann et al.

present FlashWeave, a novel co-

occurrence method that predicts

interpretable microbial interaction

networks through graphical model

inference. FlashWeave is highly scalable

and addresses data heterogeneity. They

validate the method in extensive

benchmarks on diverse synthetic and

real-world data sets.

Tackmann et al., 2019, Cell Systems 9, 286–296
September 25, 2019 ª 2019 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cels.2019.08.002

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e:
 To

ol
s

35



FlashWeave: modes

Sensitive vs fast mode
• Implementation of 

conditional independence:
– Sensitive mode: partial 

correlations on abundances, 
assumes multivariate normal 
distribution (weak assumption)

– Fast mode: mutual information 
on presence/absences
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HE mode
• FlashWeave can optionally ignore 

zeros (‘structural zeros’) to deal 
with heterogeneous samples 

FlashWeave-S required 53% more runtime than FlashWeave-F
on this benchmark.

For the heterogeneous test, we measured the computational
speed of FlashWeaveHE and all previous methods on all five
body sites from the HMP data set (5514 samples, 1521 OTUs).
FlashWeaveHE-F was 51 times faster than the closest non-
FlashWeave method (SpiecEasi-MB) in this test and on average
371 times faster than standard FlashWeave (other methods did
not finish; factor >518; Figure 3B). FlashWeaveHE-S required
116% more runtime than FlashWeaveHE-F in this benchmark.
We also used this data set to test the univariate method fastLSA
(Durno et al., 2013), an optimized implementation of the precur-
sor algorithm of eLSA, and found that it ran on average 3.46
times faster than FlashWeaveHE with conditional search but
6.05 times slower than univariate FlashWeave(HE) (Figure S2C).

In addition, it produced on average 84% reduced F1 scores on a
variety of synthetic benchmarks compared to conditional
FlashWeave (Figure S2D).
To test computational scalability in a more demanding setting,

we used FlashWeaveHE-F to infer a large-scale ecological
network based on 504,647 sequencing samples spanning
various habitats and conditions, mapped to 75,516 OTUs at
98% 16S rRNA identity. Inference of the full association network
completed after 1d10h46min on a high-performance computing
cluster with 200 CPU cores.

MVs Are Central Hubs in the HMP Network, with High
Explanatory Power
MVs, such as habitats, conditions (e.g., antibiotic usage), and
technical factors (e.g., amplicon or whole-genome shotgun

Sample group 2

Sample group 1
OTU present

OTU absent

Sample
group 1

Sample
group 2

A Impact of structural zeroes
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FlashwHE-S
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Network inference method
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Figure 3. Network Inference Performance on (1) Heterogeneous Datasets with Increased Fractions of Structural Zeros and (2) Robustness to
Simulated Noise
Method abbreviations (in addition to those from Figure 2) are FlashwHE-S, FlashWeaveHE-S; FlashwHE-F, FlashWeaveHE-F.

(A) Schematic overview of how structural zeros can lead to false-positive edges. Dashed lines represent indirect associations: positive (green) between OTUs

from the same sample group, negative (red) between OTUs from different sample groups.

(B) Run-time comparison on the HMP data set (all body sites) as a representative heterogeneous data set (OTU prevalence >20).

(C) Prediction performance on aggregated disjoint habitats generated by the Ecological Models approach (Weiss et al., 2016), measured using F1 score, recall,

and precision. CoNet and mLDM did not finish computation after 2 weeks. Error bars depict 95% confidence intervals of the mean, based on 1,000 bootstrap

replicates.

(D) Robustness of predicted edges under noise induced by repeated rarefactions. For each input data set, edges found across n rarefactions of this data set are

counted toward bin n in the respective histograms. For synthetic data sets, information on true positives and false positives in each bin is provided via green and

red bars, respectively, while real-world data sets do not have this information (gray bars). See Figure S5A for a comprehensive comparison of all tools and

additional data sets.

290 Cell Systems 9, 286–296, September 25, 2019
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FlashWeave: Run time
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tools can be tested but is limited to a small fraction of the total
marine micro-eukaryotic diversity and likely incomplete. It thus
can only be used to benchmark recall on a restricted subset of
true positive interactions but yields no information about false
positives. Consequently, less precise methods that tend to pre-
dict more edges will have an advantage when only raw numbers
of true positives are compared since higher false-positive rates
of these tools are not considered.
To circumvent this issue and to perform a meaningful bench-

mark, we compared methods in terms of how highly they ranked
literature interactions amongst their 2,000 strongest reported as-
sociations (Figure 2B). The underlying assumption was that
methods that rank known interactions more highly will generally
report more reliable relationships. To make computation feasible
for all methods, we reduced the TARA Oceans data set to only
OTUs that participate in at least one literature interaction.
FlashWeave-S found on average 24% more literature interac-
tions among high-ranking edges than the closest follow-up
method (SpiecEasi-MB), 38% more than FlashWeave-F and on
average 80%more than other methods. While the TARA Oceans
data set shows considerable heterogeneity, FlashWeaveHE was

not applicable due to insufficient statistical power (only 22–335
predicted edges total).

Pronounced Runtime Improvements in the Human
Microbiome Project and TARA Oceans Datasets
Webenchmarked the computational speed of all methods on the
HumanMicrobiome Project (HMP [The HumanMicrobiome Proj-
ect Consortium, 2012]) and TARA Oceans (Lima-Mendez et al.,
2015) data sets in two settings: homogeneous and heteroge-
neous. For the homogeneous test, we used 2,500 oral samples
from the HMP data set and measured runtime on sets of 500,
750 and 1000 randomly selected OTUs (Figure 2A). FlashWeave
outperformed other methods by factors of 8 to 158 on this
benchmark (mean: 67), excluding multiple methods (SpiecEasi-
GL, CoNet, mLDM) that did not finish after 2 days of computation
(factor >339). FlashWeave-S had on average 33% increased
runtime over FlashWeave-F.
On the TARA Oceans data set (289 samples, 3,762 OTUs),

FlashWeave-F was 29 times faster than the closest non-Flash-
Weave method (SpiecEasi-MB), while all remaining methods
did not finish computation (factor >106; Figure 2A).
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Figure 2. Comparison of FlashWeave to State-of-the-Art Network Inference Methods
Method abbreviations are Flashw-S, FlashWeave-S; Flashw-F, FlashWeave-F; SpiecE-MB, SpiecEasi-MB; SpiecE-GL, SpiecEasi-GL.

(A) Run-time comparison on the TARA Oceans (OTU prevalence >50) and Human Microbiome Project (oral body site only, no OTU prevalence filter) data sets.

(B) Number of gold-standard planktonic interactions in the TARA Oceans data set among the 2,000 edges ranked most highly by each tool. mLDM did not finish

computation after 2 weeks.

(C) Prediction performance on data sets with synthetically engineered edges. Data were generated based on Kurtz et al., (2015) and Weiss et al., (2016), and

performance was measured as F1 score (harmonic mean of precision and recall). Error bars depict 95% confidence intervals of the mean, based on 1,000

bootstrap replicates.
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ca. 3h

ca. 17h

FlashWeave-S required 53% more runtime than FlashWeave-F
on this benchmark.

For the heterogeneous test, we measured the computational
speed of FlashWeaveHE and all previous methods on all five
body sites from the HMP data set (5514 samples, 1521 OTUs).
FlashWeaveHE-F was 51 times faster than the closest non-
FlashWeave method (SpiecEasi-MB) in this test and on average
371 times faster than standard FlashWeave (other methods did
not finish; factor >518; Figure 3B). FlashWeaveHE-S required
116% more runtime than FlashWeaveHE-F in this benchmark.
We also used this data set to test the univariate method fastLSA
(Durno et al., 2013), an optimized implementation of the precur-
sor algorithm of eLSA, and found that it ran on average 3.46
times faster than FlashWeaveHE with conditional search but
6.05 times slower than univariate FlashWeave(HE) (Figure S2C).

In addition, it produced on average 84% reduced F1 scores on a
variety of synthetic benchmarks compared to conditional
FlashWeave (Figure S2D).
To test computational scalability in a more demanding setting,

we used FlashWeaveHE-F to infer a large-scale ecological
network based on 504,647 sequencing samples spanning
various habitats and conditions, mapped to 75,516 OTUs at
98% 16S rRNA identity. Inference of the full association network
completed after 1d10h46min on a high-performance computing
cluster with 200 CPU cores.

MVs Are Central Hubs in the HMP Network, with High
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MVs, such as habitats, conditions (e.g., antibiotic usage), and
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Figure 3. Network Inference Performance on (1) Heterogeneous Datasets with Increased Fractions of Structural Zeros and (2) Robustness to
Simulated Noise
Method abbreviations (in addition to those from Figure 2) are FlashwHE-S, FlashWeaveHE-S; FlashwHE-F, FlashWeaveHE-F.

(A) Schematic overview of how structural zeros can lead to false-positive edges. Dashed lines represent indirect associations: positive (green) between OTUs

from the same sample group, negative (red) between OTUs from different sample groups.

(B) Run-time comparison on the HMP data set (all body sites) as a representative heterogeneous data set (OTU prevalence >20).

(C) Prediction performance on aggregated disjoint habitats generated by the Ecological Models approach (Weiss et al., 2016), measured using F1 score, recall,

and precision. CoNet and mLDM did not finish computation after 2 weeks. Error bars depict 95% confidence intervals of the mean, based on 1,000 bootstrap

replicates.

(D) Robustness of predicted edges under noise induced by repeated rarefactions. For each input data set, edges found across n rarefactions of this data set are

counted toward bin n in the respective histograms. For synthetic data sets, information on true positives and false positives in each bin is provided via green and

red bars, respectively, while real-world data sets do not have this information (gray bars). See Figure S5A for a comprehensive comparison of all tools and

additional data sets.
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ca. 1.5h

ca. 8h

FlashWeave-S required 53% more runtime than FlashWeave-F
on this benchmark.

For the heterogeneous test, we measured the computational
speed of FlashWeaveHE and all previous methods on all five
body sites from the HMP data set (5514 samples, 1521 OTUs).
FlashWeaveHE-F was 51 times faster than the closest non-
FlashWeave method (SpiecEasi-MB) in this test and on average
371 times faster than standard FlashWeave (other methods did
not finish; factor >518; Figure 3B). FlashWeaveHE-S required
116% more runtime than FlashWeaveHE-F in this benchmark.
We also used this data set to test the univariate method fastLSA
(Durno et al., 2013), an optimized implementation of the precur-
sor algorithm of eLSA, and found that it ran on average 3.46
times faster than FlashWeaveHE with conditional search but
6.05 times slower than univariate FlashWeave(HE) (Figure S2C).

In addition, it produced on average 84% reduced F1 scores on a
variety of synthetic benchmarks compared to conditional
FlashWeave (Figure S2D).
To test computational scalability in a more demanding setting,

we used FlashWeaveHE-F to infer a large-scale ecological
network based on 504,647 sequencing samples spanning
various habitats and conditions, mapped to 75,516 OTUs at
98% 16S rRNA identity. Inference of the full association network
completed after 1d10h46min on a high-performance computing
cluster with 200 CPU cores.

MVs Are Central Hubs in the HMP Network, with High
Explanatory Power
MVs, such as habitats, conditions (e.g., antibiotic usage), and
technical factors (e.g., amplicon or whole-genome shotgun
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Figure 3. Network Inference Performance on (1) Heterogeneous Datasets with Increased Fractions of Structural Zeros and (2) Robustness to
Simulated Noise
Method abbreviations (in addition to those from Figure 2) are FlashwHE-S, FlashWeaveHE-S; FlashwHE-F, FlashWeaveHE-F.

(A) Schematic overview of how structural zeros can lead to false-positive edges. Dashed lines represent indirect associations: positive (green) between OTUs

from the same sample group, negative (red) between OTUs from different sample groups.

(B) Run-time comparison on the HMP data set (all body sites) as a representative heterogeneous data set (OTU prevalence >20).

(C) Prediction performance on aggregated disjoint habitats generated by the Ecological Models approach (Weiss et al., 2016), measured using F1 score, recall,

and precision. CoNet and mLDM did not finish computation after 2 weeks. Error bars depict 95% confidence intervals of the mean, based on 1,000 bootstrap

replicates.

(D) Robustness of predicted edges under noise induced by repeated rarefactions. For each input data set, edges found across n rarefactions of this data set are

counted toward bin n in the respective histograms. For synthetic data sets, information on true positives and false positives in each bin is provided via green and

red bars, respectively, while real-world data sets do not have this information (gray bars). See Figure S5A for a comprehensive comparison of all tools and

additional data sets.
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Other microbial network inference tools
• MENAP (Molecular Ecological Network Analyses Pipeline): exploits random 

matrix theory to threshold similarity matrix
• SparCC: sparse correlations robust to compositionality
• REBACCA/CCLasso: sparse compositionality-robust correlations 
• MInt: Takes environmental factors into account through hierarchical regression
• gCoda: estimates inverse covariance like SPIEC-EASI, but deals differently with 

compositionality
• NetCoMi: correlation networks with comparison functions

MENAP: Zhou et al. (2010) “Functional Molecular Ecological Networks” mBio 1 (4), e00169-10.
SparCC: Friedman & Alm (2012) “Inferring Correlation Networks from Genomic Survey Data.” PLoS Comp Bio 8 (9), e1002687.
REBACCA: Ban et al. (2015) “Investigating microbial co-occurrence patterns based on metagenomic compositional data” 
Bioinformatics 31(20):3322-3329.
CCLasso: Fang et al. (2015) “CCLasso: correlation inference for compositional data through Lasso” Bioinformatics 31(19):3172-3180.
MInt: Biswas et al. (2015) “Learning Microbial Interaction Networks from Metagenomic Count Data” RECOMB, Research in 
Computational Molecular Biology, 32-43 (Lecture Notes in Computer Science).
gCoda: Huaying et al. (2017) “gCoda: Conditional Dependence Network Inference for Compositional Data” Journal of Computational 
Biology 24(7): 699-708.
NetCoMi: Peschel et al. (2021) “NetCoMi: network construction and comparison for microbiome data in R” Briefings in 
Bioinformatics 22(4), 1-18.

List is not complete
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Time

Tools exploiting time series 
information

Inference of directed networks

the minimal median predicted concentrations of C.
difficile at 28 days, the duration of our actual experi-
ment. Intriguingly, MDSINE predicted that the smallest
stable sub-community capable of excluding C. difficile
with probability >90 % requires just three organisms (R.
hominis, B. fragilis, and C. hiranonis). Interestingly,
although MDSINE predicts similar colonization resist-
ance for larger communities (all of them including the
stable three-species sub-community), the stability prob-
ability decreases somewhat for the larger communities.
It is of interest to understand whether bacterial biomass

data are necessary for inference of bacterial interaction
networks, or at least if less frequent biomass measure-
ments would suffice, given that biomass has not been rou-
tinely measured in many microbiome studies. To test the
necessity of biomass data for the C. difficile experiments,
we replaced biomass measurements with the average value
across all mice and all time points, hence providing no
useful information on biomass to MDSINE. This “no bio-
mass” inference resulted in an AUC value of 0.76 when
compared with the “reference” network inferred using all
biomass data. The “no biomass network” had no incoming
edges for C. difficile with strong evidence (Bayes factors
≥10) but edges for C. scindens and R. hominis interactions
still had borderline Bayes factors of 7.7 and 3.0, respect-
ively. We additionally tested whether our BAPCS algo-
rithm could be used to improve network inference, by

interpolating bacterial biomass values, in the scenario in
which bacterial biomass was sampled less frequently than
bacterial relative abundances. For this test, we hid either
six or ten biomass measurements, with time points chosen
using the scheme discussed above that prioritizes sam-
pling around perturbations. When six biomass measure-
ments were hidden, the inferred bacterial interaction
network was almost identical to the “reference” network
(AUC= 0.93), whereas when ten biomass measurements
were hidden, performance degraded to the level of the “no
biomass” network (AUC= 0.74). These results suggest that
many edges of the bacterial interaction network can still
be accurately inferred in the absence of biomass data but
that biomass data do provide important additional infor-
mation. Further, our method can be used to interpolate
biomass measurements to some extent, allowing for less
frequent biomass sampling, but performance dropped off
dramatically beyond about 25 % missing measurements.

Probiotic cocktail colonization and stability experiments
Our second experimental dataset evaluated the dy-
namics of colonization of gnotobiotic mice with a pro-
biotic bacterial cocktail and subsequent effects of a
dietary perturbation (Additional file 5: Figure S3). We
recently described a set of Clostridia strains (VE-202)
that are potent inducers of regulatory T cells (Tregs)
and suppressors of inflammation [24] and are now
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Fig. 3 Application of MDSINE to an experimental dataset evaluating the dynamics of Clostridium difficile infection in gnotobiotic mice. Germ-free
mice were pre-colonized with the GnotoComplex microflora, a mixture of human commensal bacterial type strains chosen to capture the phylogenetic
diversity and key physiologic capabilities of a native gut microflora. After the commensal microbiota were allowed to establish for 28 days, mice were
infected with C. difficile spores and monitored for an additional 28 days. Throughout the experiment, 26 fecal samples per mouse were collected and
interrogated via high-throughput 16S rRNA sequencing to determine abundances of species and 16S rRNA qPCR using universal primers to estimate
the total bacterial biomass present. a Predicted directed microbe–microbe interaction network. Edge thickness denotes the magnitude of the
evidence favoring presence of the interaction (Bayes factors [35]); only edges with strong evidence (Bayes factor ≥10) are displayed. b Predicted
stable combinations of strains for each possible size of sub-community that optimally inhibit C. difficile colonization. Each row depicts the
sub-community (combination of commensal strains) of a given size that is predicted to stably colonize the gut in the absence of the pathogen and
is predicted to maximally inhibit C. difficile infection at the experimental end point (28 days). CDI median predicted median concentration of C. difficile
at 28 days, CDI mad predicted absolute deviation of the median of the C. difficile concentration at 28 days
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Local Similarity Analysis (LSA)

Xia et al. (2013) “Efficient statistical significance approximation for local similarity analysis of high-throughput 
time series data” Bioinformatics 29 (2), 230-237.
Durno et al. (2013) “Expanding the boundaries of local similarity analysis” BMC Genomics 14 (1), S3.
Xia et al. (2011) “Extended local similarity analysis (eLSA) of microbial community and other time series data 
with replicates.” BMC Systems Biology 5 (2), S15.
Ruan et el. (2006) “Local similarity analysis reveals unique associations among marine bacterioplankton species 
and environmental factors” Bioinformatics 22 (20), 2532-2538.

• LSA uses dynamic programming to find local associations and 
lagged associations

• Can be applied to cross-sectional and time series data
• P-values computed through permutation or formula
• Command line tool: 

– https://bitbucket.org/charade/elsa/wiki/Home

!0.94, respectively), LSA catches this association and the normal-
ized local similarity score is 0.475 with a P-value of 0.044.

Correlations with time delay Two temporal sequences with
some time delay were simulated (Fig. 2). Here we assume that
Wnþ3 ¼ Xn þ e, where e is standard normal, i.e. e $ Nð0‚1Þ. The
PCC between the two sequences is !0.122 (P-value 0.32).
As we can see from Figure 2a that there is a three time points

delay between the two temporal sequences—sequence x is
three time points behind sequence w. The aligned view of the
two sequences show a strong correlation, as can be seen in
Figure 2b. LSA can identify this time delay—it gives a local
similarity score of 0.653 (with a P-value of 0.0273) between
these two sequences . Of course, if we knew this time delay before-
hand, we could compute the Pearson correlation of the two
matching subsequences.

Marine bacterioplankton community profile analysis

We applied LSA to a real ecological dataset which included
measurements of bacterial community composition via ARISA
as well as 14 environmental factors sampled at 35 time points as
mentioned in the Materials and Methods section. The dynamic
program algorithm based binning method (Ruan et al., 2006)
defined 58 major OTUs. The 58 OTUs and 14 environmental factors
form the basis of our analysis.
LSA revealed 249 OTU pairs and 128 pairs of OTUs and

environmental factors with P-value '0.05. With more stringent
significance level of 0.01, 100 OTU pairs and 44 pairs of OTU
and environmental factors with significant local similarity scores
were found.
The histogram for the resulting P-values for all the OTU pairs

is given in Figure 3a. In order to see the expected distribution of the
P-values under the null model of no association among the OTUs,
we randomly permute each OTU sequence to obtain a total of
58 permuted OTU sequences. The local similarity scores and the
corresponding P-values are calculated similarly as above. Figure 3b
gives the histogram for the P-values for the permuted data which
closely resembles a uniform distribution in [0,1]. Figure 3a shows
that the P-values for the real data are biased toward 0 indicating
many closely related OTU pairs.
Furthermore, as we computed the PCC for the OTU pairs

and pairs of OTUs and environmental factors with significant
local similarity scores, we also found that 186 out of the 249 sig-
nificant OTU pairs by local similarity are also significant by PCC
(P-value 0.05).

LSA also revealed significant relationships (P-value ' 0.01)
among OTUs as well as OTU and environmental factors which
could not be detected using PCC. Specifically, of the 100 significant
OTU–OTU associations detected by LSA, 18 associations were
found to be not significant by PCC and 11 out of 44 significant
association pairs of OTU and environmental factors are non-
significant by PCC. For each P-value of the local similarity
score, a Q-value was calculated.

Co-varying OTU pairs identified by local similarity but not by
PCC Out of the 100 significant OTU–OTU associations, 18 asso-
ciations were found to be not significant by PCC (P-value ' 0.01)
(Table 1).
OTU pair (22,31): Figure 4. This OTU pair OTU22 (fragment

length: 658) and OTU31 (fragment length: 718) are putative a
Proteobacteria within the SAR11 group. They showed high local
similarity score of 0.399 with P-value of 0.004. The Q-value of
0.06901 indicates that for this significant OTU pair, there is a
probability of $0.07 that it is a false discovery, i.e. there is indeed

Fig. 2. Correlations with time delay identified by local similarity but not

by Pearson correlation. Two temporal sequences with some time delay were

simulated by Wnþ3 ¼ Xn þ e, where e is standard normal, i.e. e $ N(0,1).
(a) Original sequences. (b) Aligned view. Fig. 3. The histograms of the P-values for (a) the real data and (b) the

permuted data.

Table 1. OTU paris with P-value '0.01 using LSA, but not using PCC

OtuX OtuY LS score(P-value, P-value) PCC(P-value)

10 31 !0.442(0.007, 0.09413) !0.172(0.158)

17 31 !0.411(0.007, 0.09413) !0.212(0.107)

22 31 +0.399(0.004, 0.06901) 0.353(0.017)

30 56 !0.382(0.005, 0.07749) !0.212(0.108)

11 36 +0.360(0.006, 0.08708) !0.059(0.367)

15 48 !0.342(0.009, 0.10757) !0.283(0.047)

2 7 +0.330(0.001, 0.03208) 0.116(0.249)

5 7 !0.329(0.007, 0.09413) 0.262(0.061)

5 54 !0.303(0.009, 0.10757) !0.083(0.315)

30 58 +0.293(0.009, 0.10757) !0.092(0.297)

1 54 !0.288(0.008, 0.10679) !0.283(0.047)

19 34 +0.280(0.010, 0.11289) !0.273(0.054)

15 34 +0.263(0.009, 0.10757) 0.130(0.225)

41 54 +0.259(0.006, 0.08708) 0.168(0.164)

13 34 +0.252(0.001, 0.03208) !0.033(0.424)

5 43 !0.248(0.002, 0.04572) 0.175(0.153)

28 57 !0.229(0.009, 0.10757) !0.248(0.072)

27 57 +0.226(0.006, 0.08708) 0.318(0.029)

The first two columns are the OTU pairs. The third column gives the LSA scores,

the P-values and the Q-values. The fourth column shows the PCC score and the

corresponding P-value.

LSA
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Generalized Lotka-Volterra (gLV)

• The species network can be represented by the directed
interaction matrix A;  entries represent interaction strengths

• Species abundance vector X changes as a function of species 
initial abundance, growth rates B and its interactions A

Generalized Lotka
Volterra (gLV)

dX(t)
dt

= X(t) B+ AX(t)( )

Negative
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Simulation with gLV

Community matrix
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GLV parameterization
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• Idea: infer gLV parameters from time series
• gLV parameters include species interaction matrix A
• gLV parameterization is a type of network inference

dX(t)
dt

= X(t) B+ AX(t)( )

A



• Tools parameterizing gLV equation:
– LIMITS: step-wise forward regression plus bootstrap
– MDSINE: parameterizes gLV with maximum likelihood and 

Bayesian algorithms
– SgLV-EKF: parameterizes a stochastic gLV model with an extended 

Kalman Filter
– MetaMIS: parameterizes gLV with partial least square regression

GLV parameterization tools

LIMITS: Fisher and Mehta (2014). “Identifying Keystone Species in the Human Gut Microbiome from Metagenomic 
Timeseries using Sparse Linear Regression.” PLoS one 9, e102451.
MDSINE: Bucci et al. (2016) “Microbial Dynamical Systems INference Engine for microbiome time-series analyses” 
Genome Biology 17:121.
Alshawaqfeh et al. (2017) “Inferring microbial interaction networks from metagenomic data using SgLV-EKF 
algorithm” BMC Genomics 18:228.
Shaw et al. (2016): “MetaMIS: a metagenomic microbial interaction simulator based on microbial community 
profiles” BMC Bioinformatics 17:488.

List is not complete
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Evaluation

• How well do microbial network inference tools perform?

Warning:
If not stated otherwise, 
everything in this section is 
on synthetic data only



Tool Evaluation I 

Evaluation: Weiss, Van Treuren, Lozupone, Faust et al. The ISME Journal 10, 1669-1681, 2016.
MIC: Reshef et al. Science 334, 1518-1524, 2011. 
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Tool Evaluation I: False positives and noise 

• Most tools predict low number of false positives in data simulated 
without interactions (Dirichlet-Multinomial)

• CoNet and MIC are robust to noise (similar networks after repeated 
rarefactions)
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at different neff (Figure 2a), and deviate from the edge
predictions based on absolute environmental OTU
abundances (Figure 2b). Rank-based measures such
as MIC and Spearman, as well as Bray–Curtis,
are less affected by compositional data but still
not immune. SparCC maintain high precision
compared with predictions on ‘Abundance’ tables
with low neff. However, if network overlap is
measured, no technique does well (Supplementary
Figure 9). We do not recommend DESeq normal-
ization for correlations owing to the negative values
it produces. Normalization is discussed more in the
Supplementary Note, and Supplementary Figures
2 and 3. In general, across all tools and normalization
techniques, the slope of the function describing the
number of total edges for a given neff (Supplementary
Figure 4) changes particularly quickly at low neff

(Inverse Simpson neffo13), suggesting that the
smaller the number of effective species, the larger

the impact on edge inference results. Given these
findings, promising work has been done on addres-
sing compositional data as a significant challenge to
co-occurrence network inference, but the problem is
still not solved.

The number of FP in null data is within expectations but
differs by tool/technique and in some cases distribution
Control of the number of FP is well established in
traditional statistical analysis (Dunn, 1961; Hochberg
and Benjamini, 1990; Storey and Tibshirani, 2003)
but has not been standardized for correlation
inference. RMT allows the method itself to set the
correlation threshold, rather than employing an
arbitrary user-imposed threshold. LSA, CoNet
and SparCC calculate the P-value through
permutation-based approaches, and q-value (Storey
and Tibshirani, 2003) and Benjamini–Hochberg
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Pearson

RMT
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Figure 2 The impact of compositional data and normalization strategy on reconstructing actual microbial interactions. Five tables with
varying neff (36, 25, 19, 10, 4) were created by multiplication of the abundances of one OTU pair by a constant; all other OTU abundances
remained the same for all tables. These ‘Abundance’ tables represent the actual OTU abundances in the environment. SparCC assumes the
data table is compositional, and hence is not shown. Then, the ‘Abundance’ tables were sampled without replacement (rarefied),
constraining the sum and inducing compositionality, mimicking the experimental sampling process. The rarefied (2000 library size) tables
were then either rarefied further (rarefy 1000 library size), CSS normalized or DESeq normalized. From left to right: (a) The five circles
within each normalization technique represent: of all the edges found in the five neff tables, the number of edges found 1 (red)—5 (blue)
times. A technique less affected by the compositional nature of the data has a larger circle at point 5, as most tools do in the ‘Abundance’
tables. (b) Precision of a tool’s estimates on the compositional normalized tables as compared with the same tool’s predictions on the
‘Abundance’ tables for a given neff. A larger circle represents better reconstruction of the true ‘Abundance’ OTU correlations.

Microbial correlation detection strategies
S Weiss et al

6

The ISME Journal

Tool Evaluation I: Effect of compositionality
• Compositionality effect is stronger for lower evenness (neff)
• Bray-Curtis and SparCC are compositionally robust (absolute 

versus relative abundance does not alter results)
• Alternative normalization techniques (CSS/DESeq) do not 

outperform rarefaction
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Abundance of 
selected taxon pair 
multiplied with a 
constant to 
decrease evenness



• Interaction detection accuracy in zero-rich, compositional 
data is low for all tools

Bray Curtis

CoNet

LSA

MIC

Pearson

RMT

SparCC

Spearman

amensal commensal competitive mutual obligate parasitic

partial
obligate

syntrophic

partial
obligate

syntrophicamensal commensal competitive mutual obligate parasitic

Bray Curtis

CoNet

LSA

MIC

Pearson

RMT

SparCC

Spearman

2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5
Strength (2, 3, or 5) Strength (2, 3, or 5)

co-presence

mutual exclusion

Figure 3 Types of linear ecological relationships detected by each correlation technique. The columns represent the seven types of
engineered ecological relationships, and the rows indicate the eight tools tested. Each cell contains three histograms with increasing
‘strength’ of relationship from left to right. The fill in each bar represents the fraction of engineered edges detected as significant when the
relationships were composed of (a) pairs of features or (b) triples or more.

Figure 4 Tool precision is extremely low under realistic microbiome data set conditions. Precision vs recall (sensitivity) curves for linear
ecological relationships (a–c) and non-linear/Lotka–Volterra ecological relationships (d–h). All tables were ~40% sparse, except (c) and (h),
which were 70% sparse. The CoNet ROC curve does not extend from the bottom left corner to the top right corner of the ROC curves because
of the filtering procedure CoNet uses prior to inferring any correlations. RMT is only a single point since the algorithm sets the P-value,
instead of the user imposing a P-value. Although the dots are connected by interpolation, only the dots themselves have been measured.

Microbial correlation detection strategies
S Weiss et al

8

The ISME Journal

0.00

0.02

0.04

0.06

0.08

0.10

0.12
CoNet

LSA

RMT

SparCC

NaivePearson

NaiveSpearman

Bray-Curtis

MIC
0.10.050.010.001

0.00

0.05

0.10

0.15

0.20
CoNet

LSA

RMT

SparCC

NaivePearson

NaiveSpearman

Bray-Curtis

MIC
0.10.050.010.001

a

b

p-value

p-value

FPR

FPR
Tool Evaluation I: Interactions 

Sensitivity: TP/(TP+FN)
Precision (positive predictive value): TP/(TP+FP)
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• One source of error: indirect edges
• Tools based on inverse covariance 

take them out
• Are these new tools (SPIEC-EASI, 

gCoda) more accurate than previous 
ones? 

• FlashWeave not included (published 
afterwards)

X

Indirect edge

Direct edge

SPIEC-EASI: Kurtz et al. PLoS Computational Biology 11(5), e1004226, 2015.
gCoda: J. Comput. Biol. 24(7), 699-708, 2017.

Inverse covariance to the rescue?
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Tool evaluation II (with environment)
Data generation: 
• Modular and scale-free interaction matrix (Klemm-Eguiluz)
• Simulations with generalized Lotka-Volterra including 

environmental effects
• Cross-sectional microbiome abundances generated Sam Röttjers

With increasing environmental impact 
in the simulations, clusters form in the 
networks.M
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Tool evaluation II (with environment)
10 FEMS Microbiology Reviews

Figure 4. Network statistics for association networks inferred by CoNet, gCoda, SparCC, Spearman correlation and SPIEC-EASI from datasets with increasing environ-
mental strength. For CoNet, two p-value merging methods were tested: Fisher p-value merging and Brown p-value merging. For SPIEC-EASI, two different algorithms
were included: the graphical lasso as well as the Meinshausen–Bühlmannmethod. These settings are referred to as GL and MB. (A) Scatterplot of precision versus sen-
sitivity for all generated networks. Sensitivity measures how many of the known interactions are predicted, whereas precision quanti!es how many of the predicted
interactions are correct. In (B-E) a quadratic function was !tted to the data points, and the gray area represents the 95% con!dence interval for the predicted quadratic
function. (B) Average degree for all networks, with the average degree for the Klemm–Eguı́luz matrices indicated at x = 0. The average degree increases drastically for
CoNet and Spearman. (C-E) Precision, assortativity and transitivity of all networks. Precision decreases for all tools when environmental strength increases, whereas
transitivity increases. However, no general trend can be observed for assortativity.

networks, and those can be simulated with the Klemm–Eguı́luz
algorithm, which generates networks through preferential
attachment (Klemm and Eguı́luz 2002). Consequently, we
generated synthetic interaction networks with this algorithm
and then used these ‘known’ networks to test tools’ abilities to
infer emergent properties from data. A graphical summary of
the simulation is provided in Fig. S1 (Supporting Information),
while a more elaborate explanation of the methodology and a
code repository are provided as supplementary !les.

Network structure is changed by sample heterogeneity

To study the effect of environmental factors, we changed growth
rates in half of the samples in each dataset, effectively simu-
lating different environmental conditions in a single dataset. A
similar approach included environmental parameters in a gLV
model before, and this model could be !tted to seasonal "uctu-
ations in a lake population (Dam et al. 2016).

We expected the increasing environmental in"uence to be
accompanied by a decrease in precision, as more environmen-
tally induced indirect edges are formed. This is indeed re"ected
in Fig. 4B and 4C. While not all tools reported an increase in
degree (especially SPIEC-EASI kept inferring sparse networks),
precision decreased for all tools. Moreover, the environmental
factors changed the network structure, as transitivity increased
markedly. While the transitivity is expected to increase as the

degree increases, it also increases for tools that do not report
a sharp increase in degree. The differences between the SPIEC-
EASI algorithms is especially noteworthy, as the changes in pre-
cision are not drastically different between the two, whereas
the transitivity coef!cients are. Moreover, the small increase in
degree indicates that the networks inferred by SPIEC-EASI are
rewired as the environmental factors become stronger.

Finally, Fig. 4D indicates how assortativity varied wildly for
all tools across conditions. Assortativity is generally assumed to
be negative in biological networks. The Klemm–Eguı́luz interac-
tionmatrices re"ect this. Yet, most tools fail to return a negative
assortativity; if they do, that changes once the dataset condi-
tions change. For SPIEC-EASI, positive assortativity can at least
partially be explained by the low number of edges (sparsity) of
its inferred networks. With nodes in the SPIEC-EASI networks
following a narrower degree distribution, they are less likely to
be disassortative as there are fewer high-degree nodes to con-
nect to. In contrast, networks inferred with CoNet have nega-
tive assortativity scores at low environmental strength, but the
scores become positive when the in"uence of the environment
increases. This may be explained by an increase in node degree
once CoNet starts correlating species as a result of environmen-
tal factors.

Global network properties in inferred networks frequently
failed to match the values measured in the Klemm–Eguı́luz in-
teractionmatrices. Network theory provides a valuable resource,
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ic.oup.com
/fem

sre/advance-article-abstract/doi/10.1093/fem
sre/fuy030/5061627 by KU
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• Tools based on inverse 
covariance (SPIEC-EASI, 
gCoda) are more precise, 
but less sensitive than 
other tools 

• Increasing environmental 
effect tends to lower 
precision, especially in 
tools based on inverse 
covariance

• There is no silver bullet 
tool 

Röttjers & Faust (2018) “From hairballs to hypotheses - biological insights 
from microbial networks” FEMS Microbiology Reviews 42, 761-780.

10 FEMS Microbiology Reviews

Figure 4. Network statistics for association networks inferred by CoNet, gCoda, SparCC, Spearman correlation and SPIEC-EASI from datasets with increasing environ-
mental strength. For CoNet, two p-value merging methods were tested: Fisher p-value merging and Brown p-value merging. For SPIEC-EASI, two different algorithms
were included: the graphical lasso as well as the Meinshausen–Bühlmannmethod. These settings are referred to as GL and MB. (A) Scatterplot of precision versus sen-
sitivity for all generated networks. Sensitivity measures how many of the known interactions are predicted, whereas precision quanti!es how many of the predicted
interactions are correct. In (B-E) a quadratic function was !tted to the data points, and the gray area represents the 95% con!dence interval for the predicted quadratic
function. (B) Average degree for all networks, with the average degree for the Klemm–Eguı́luz matrices indicated at x = 0. The average degree increases drastically for
CoNet and Spearman. (C-E) Precision, assortativity and transitivity of all networks. Precision decreases for all tools when environmental strength increases, whereas
transitivity increases. However, no general trend can be observed for assortativity.

networks, and those can be simulated with the Klemm–Eguı́luz
algorithm, which generates networks through preferential
attachment (Klemm and Eguı́luz 2002). Consequently, we
generated synthetic interaction networks with this algorithm
and then used these ‘known’ networks to test tools’ abilities to
infer emergent properties from data. A graphical summary of
the simulation is provided in Fig. S1 (Supporting Information),
while a more elaborate explanation of the methodology and a
code repository are provided as supplementary !les.

Network structure is changed by sample heterogeneity

To study the effect of environmental factors, we changed growth
rates in half of the samples in each dataset, effectively simu-
lating different environmental conditions in a single dataset. A
similar approach included environmental parameters in a gLV
model before, and this model could be !tted to seasonal "uctu-
ations in a lake population (Dam et al. 2016).

We expected the increasing environmental in"uence to be
accompanied by a decrease in precision, as more environmen-
tally induced indirect edges are formed. This is indeed re"ected
in Fig. 4B and 4C. While not all tools reported an increase in
degree (especially SPIEC-EASI kept inferring sparse networks),
precision decreased for all tools. Moreover, the environmental
factors changed the network structure, as transitivity increased
markedly. While the transitivity is expected to increase as the

degree increases, it also increases for tools that do not report
a sharp increase in degree. The differences between the SPIEC-
EASI algorithms is especially noteworthy, as the changes in pre-
cision are not drastically different between the two, whereas
the transitivity coef!cients are. Moreover, the small increase in
degree indicates that the networks inferred by SPIEC-EASI are
rewired as the environmental factors become stronger.

Finally, Fig. 4D indicates how assortativity varied wildly for
all tools across conditions. Assortativity is generally assumed to
be negative in biological networks. The Klemm–Eguı́luz interac-
tionmatrices re"ect this. Yet, most tools fail to return a negative
assortativity; if they do, that changes once the dataset condi-
tions change. For SPIEC-EASI, positive assortativity can at least
partially be explained by the low number of edges (sparsity) of
its inferred networks. With nodes in the SPIEC-EASI networks
following a narrower degree distribution, they are less likely to
be disassortative as there are fewer high-degree nodes to con-
nect to. In contrast, networks inferred with CoNet have nega-
tive assortativity scores at low environmental strength, but the
scores become positive when the in"uence of the environment
increases. This may be explained by an increase in node degree
once CoNet starts correlating species as a result of environmen-
tal factors.

Global network properties in inferred networks frequently
failed to match the values measured in the Klemm–Eguı́luz in-
teractionmatrices. Network theory provides a valuable resource,

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy030/5061627
by guest
on 29 August 2018

Node size scales with strength of 
environmental effect
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Tool evaluation III 
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Hirano & Takemoto (2019) ”Difficulty in inferring microbial community structure based on 
co-occurrence network approaches” BMC Bioinformatics 20, 329.

small-world networks (Additional file 1: Figure S4) and
scale-free networks (Additional file 1: Figure S5).

Interaction patterns in more complex networks are
harder to predict
It is noteworthy that network size, average degree, and
network type affected co-occurrence network perform-
ance. The co-occurrence network performance (baseline-
corrected AUPR values) varied with network size in some
methods (Fig. 1c and d). In particular, the performance of
Spearman’s partial correlation-based method increased
with network size in dense networks, while the perform-
ance of REBACCA decreased with network size in sparse
networks. However, co-occurrence network performance
was nearly independent of network size when n > 20 in
most methods. The interaction patterns in small networks
were poorly predicted; the co-occurrence network
methods are not suitable for capturing interaction pat-
terns in small networks. The differences in the perform-
ance between the co-occurrence network methods and
random predictions were not remarkable because the de-
gree of freedom was low in small networks.
More importantly, the interaction patterns in denser

networks generally were more difficult to predict; in par-
ticular, we observed general negative correlations be-
tween the performance (baseline-corrected AUPR value)

and average degree when n = 50 (Fig. 2a) and n = 100
(Fig. 2b). However, the performance of Spearman’s par-
tial correlation-based method (PSPE) increased for 〈k〉 <
~8 and decreased for 〈k〉 ≥ ~8 when n = 50 and 100. This
method exhibited the highest performance for dense
networks while it exhibited relatively low performance
for sparse networks; nonetheless, it should be noted that
this method poorly predicted interactions patterns (the
baseline-corrected AUPR value was at most ~ 0.4 when
〈k〉 ≥ ~8). The co-occurrence network performance
slightly increased when using more samples (Additional
file 1: Figure S6); in particular, we investigated cases in
which network size (n = 50 and 100) and average degree
(〈k〉 = 2 and 8) differed and found that co-occurrence
network performance was almost independent of sample
number when it exceeds 200 in most methods.
The correlations between the baseline-corrected AUPR

values and average degree were also investigated in
small-world networks (Additional file 1: Figure S4 and
S7) and scale-free networks (Additional file 1: Figures S5
and S8), and the negative correlations between the
baseline-corrected AUPR values and average degree were
specifically observed. However, co-occurrence network
performance moderately varied according to network
type in large and dense networks when focusing on each
inference method (Fig. 3). In particular, we investigated
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Fig. 1 Differences in the co-occurrence network performance between methods. AUPR values for 50-node networks with average degree 〈k〉 = 2
(a) and 〈k〉 = 8 (b). Error bars indicate standard deviations. Relationships between the baseline-corrected AUPR value and network size n for 〈k〉 = 2
(c) and 〈k〉 = 8 (d). Random interaction matrices and random network structure were considered. smax was set to 0.5. The number of samples was
set to 300

Hirano and Takemoto BMC Bioinformatics          (2019) 20:329 Page 6 of 14
• Data generated with gLV simulations
• Note the good performance of standard correlation methods
• FlashWeave not included

AUPR: area under the 
precision/recall curve
PEA: Pearson
PPEA: Pearson’s partial 
correlation
SPE: Spearman
PSPE: Spearman’s partial 
correlation



Evaluation of microbial network 
inference from time series

• How well do time series inference tools perform?
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• Time series generated with different population 
models (including gLV)

• Parameters (that is networks) known
• Networks inferred from simulated time series 

with LIMITS (the only tool evaluated)
• Two comparisons: 

– Known network directly compared to inferred 
network (accuracy of inference) 

– Original time series compared to time series 
generated with model parameterized with inferred 
network (goodness of fit)

Tool evaluation for time series

Simulation 
with model

Data

Inferred network

LIMITs

Co
m

pa
ris

on

LIMITS: Fisher and Mehta (2014). “Identifying Keystone Species in the Human Gut Microbiome from 
Metagenomic Timeseries using Sparse Linear Regression.” PLoS one 9, e102451.
Evaluation: Faust et al. (2018) “Signatures of ecological processes in microbial community time series”, 
Microbiome 6, 120.

Goodness of fit

M
ic

ro
bi

al
 n

et
w

or
k 

in
fe

re
nc

e 
ev

al
ua

tio
n

55



Tool evaluation for time series
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a) Neutrality test, colored by interval
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b) Neutrality test (100 time points), colored by interval
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d) LIMITS goodness of fit, colored by sigma

• Interaction matrix known: compare inferred to known interaction matrix -> 
accuracy of inference

• The more links to infer, the lower the accuracy of LIMITS
• Accuracy for shorter time series is lower, but still reasonable
• Type of interaction model (gLV, Ricker, SOI) does not matter much
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Tool evaluation for time series
• Interaction matrix unknown: compare observed time series to those 

generated with parameterized interaction model -> goodness of fit
• Goodness of fit can be misleading: it is high even for a neutral model 

that does not take interactions into account explicitly (over-fitting) 
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Sigma: level of 
internal noise

Neutral model

See also: Cao et al. (2017) “Inferring human microbial dynamics from temporal 
metagenomics data: Pitfalls and lessons” Bioessays 39(2).M
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• How well do the tools perform on biological data?
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Figure 7. Types of benchmark suites for evaluation of network inference tools.
(A) Simulated datasets using different models can help evaluate whether tools
are able to identify ecological interactions and network properties. (B) Syn-
thetic communities can provide a ground-truth network with known interac-
tions, which can then be used to evaluate tool precision on real-world data.
(C) Network modules can be associated with speci!c environmental factors or
metabolic properties. Inferred networks could be evaluated for their visualiza-
tion of such modules, if prior biological knowledge is available. (D) A reference
database could be used to match inferred edges to known interactions. In this
way, the sensitivity of network inference can be assessed for real-world commu-
nities. While it is straightforward to assess precision in simulated and synthetic
communities, it is dif!cult to measure it for real-world communities, since the
absence of a predicted interaction is hard to prove.

pre-processing affects microbial network inference, network in-
ference tool developers would bene!t from such a resource.

However, NeSSM output, as other simulations, may not
re"ect real-world microbial communities. For example, we
assumed in our simulation that microbial communities fol-
low relatively simple Lotka–Volterra dynamics. As real-world
communities may only partially be governed by such dynam-
ics and since we did not simulate measurement noise, tool
performance on our simulated datasets will differ from the
real-world situation. At the same time, in most cases we do
not know the interactions and dynamics underlying real-world
microbiomes, so performance cannot be evaluated on these
datasets. Data from synthetic communities would provide an
intermediate representation of complexity. For sequencing
analysis, the mockrobiota resource, which contains data from
mock communities, serves this purpose (Bokulich et al. 2016).

Yet, synthetic communities face similar limitations asmock-
robiota: they are still poor re"ections of real-world data, as they
only contain a fraction of the diversity and noise. While there is
no complete ground truth available for real-world datasets (e.g.
all interactions and processes have been quanti!ed), a database
could be constructed that would contain known associations.
This could be used to conclude whether inferred networks are
supported by literature, or to more systematically evaluate to
what extent network structure re"ects ecology. Fig. 7 provides
an illustration of such benchmarks. With different types of

benchmarks available, we can expect a more diverse range
of performance estimators. These would allow users to make
more informed choices regarding the network inference tool
and the experimental design.

Statistical robustness of network properties

Overall, there are some key methodological issues that need to
be resolved to reduce bias in the !eld. Such issues go beyond the
performance of microbial network inference tools, and require
researchers to understand the limitations of their approaches.
Firstly, the number of errors in microbial association networks
is large and may be mitigated with appropriate pre-processing
steps. Yet, the high false positive rate of these tools and ap-
parent sensitivity to settings implies that statistical robustness
of networks properties (in the sense that they are not affected
by different settings, missing values, noise or errors) may be
low.

Conclusions drawn from association networks would there-
fore bene!t from statistical robustness analysis. The central-
ity of a node could be reported together with a con!dence
interval or some other measure of statistical robustness. For
example, networks can be rewired while preserving the de-
gree distribution and number of associations (Karrer, Levina
and Newman 2008). The authors used this rewiring strategy
to calculate a ‘variation of information’ coef!cient. This coef-
!cient quanti!es how similar an emergent property (e.g. be-
tweenness centrality) of a slightly rewired network was to the
original network; if the network property is statistically robust,
the coef!cient is small. Hence, their coef!cient identi!es emer-
gent properties that would change if some of the edges are in-
correct. It may not be sensible to report hub species if their
con!dence interval overlaps with ∼50% of the nodes in the
network.

While the previous example addresses statistical robust-
ness, the coef!cient does not explicitly address incomplete data.
Borgatti, Carley and Krackhardt (2006) tested the effect of four
different types of errors on network properties: edge deletion,
node deletion, edge addition and node addition. Accuracy for
nearly all evaluated measures, i.e. degree and different types
of centrality, decreased as the number of errors increased.
However, they found that properties of observed networks,
even with errors, re"ected the properties of their synthetic
networks. Wang et al. (2012) expanded upon this analysis by
testing real-world networks and exploring different types of
error. Interestingly, they found that false aggregation, which
occurs when two nodes are wrongly described as one node, had
a major effect on centrality.

Not only is false aggregation inherent to species assign-
ment, it may also be introduced by taxonomic agglomeration
of species. Hence, network properties may be far less robust
when abundance data are generalized to higher taxonomic lev-
els. This indicates that there is a cost associated with taxonomic
agglomeration; if the network is agglomerated, in silico experi-
ments may not be as reliable as the global structure of the net-
work is changed. Moreover, network properties like the cluster-
ing coef!cient or node centralities will change.

Overall, publishing a con!dence estimate would allow read-
ers to judge network properties appropriately. Frantz and Carley
(2017) developed a statistic, the con!dence level, that quanti-
!es how reliable centrality (i.e. degree, betweenness) estimates
are when the false negative error rate is known. While such a
statistic would be valuable for microbiome studies, we do not
knowwhat the error rates are, andhow they relate to sequencing
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thetic communities can provide a ground-truth network with known interac-
tions, which can then be used to evaluate tool precision on real-world data.
(C) Network modules can be associated with speci!c environmental factors or
metabolic properties. Inferred networks could be evaluated for their visualiza-
tion of such modules, if prior biological knowledge is available. (D) A reference
database could be used to match inferred edges to known interactions. In this
way, the sensitivity of network inference can be assessed for real-world commu-
nities. While it is straightforward to assess precision in simulated and synthetic
communities, it is dif!cult to measure it for real-world communities, since the
absence of a predicted interaction is hard to prove.

pre-processing affects microbial network inference, network in-
ference tool developers would bene!t from such a resource.

However, NeSSM output, as other simulations, may not
re"ect real-world microbial communities. For example, we
assumed in our simulation that microbial communities fol-
low relatively simple Lotka–Volterra dynamics. As real-world
communities may only partially be governed by such dynam-
ics and since we did not simulate measurement noise, tool
performance on our simulated datasets will differ from the
real-world situation. At the same time, in most cases we do
not know the interactions and dynamics underlying real-world
microbiomes, so performance cannot be evaluated on these
datasets. Data from synthetic communities would provide an
intermediate representation of complexity. For sequencing
analysis, the mockrobiota resource, which contains data from
mock communities, serves this purpose (Bokulich et al. 2016).

Yet, synthetic communities face similar limitations asmock-
robiota: they are still poor re"ections of real-world data, as they
only contain a fraction of the diversity and noise. While there is
no complete ground truth available for real-world datasets (e.g.
all interactions and processes have been quanti!ed), a database
could be constructed that would contain known associations.
This could be used to conclude whether inferred networks are
supported by literature, or to more systematically evaluate to
what extent network structure re"ects ecology. Fig. 7 provides
an illustration of such benchmarks. With different types of

benchmarks available, we can expect a more diverse range
of performance estimators. These would allow users to make
more informed choices regarding the network inference tool
and the experimental design.

Statistical robustness of network properties

Overall, there are some key methodological issues that need to
be resolved to reduce bias in the !eld. Such issues go beyond the
performance of microbial network inference tools, and require
researchers to understand the limitations of their approaches.
Firstly, the number of errors in microbial association networks
is large and may be mitigated with appropriate pre-processing
steps. Yet, the high false positive rate of these tools and ap-
parent sensitivity to settings implies that statistical robustness
of networks properties (in the sense that they are not affected
by different settings, missing values, noise or errors) may be
low.

Conclusions drawn from association networks would there-
fore bene!t from statistical robustness analysis. The central-
ity of a node could be reported together with a con!dence
interval or some other measure of statistical robustness. For
example, networks can be rewired while preserving the de-
gree distribution and number of associations (Karrer, Levina
and Newman 2008). The authors used this rewiring strategy
to calculate a ‘variation of information’ coef!cient. This coef-
!cient quanti!es how similar an emergent property (e.g. be-
tweenness centrality) of a slightly rewired network was to the
original network; if the network property is statistically robust,
the coef!cient is small. Hence, their coef!cient identi!es emer-
gent properties that would change if some of the edges are in-
correct. It may not be sensible to report hub species if their
con!dence interval overlaps with ∼50% of the nodes in the
network.

While the previous example addresses statistical robust-
ness, the coef!cient does not explicitly address incomplete data.
Borgatti, Carley and Krackhardt (2006) tested the effect of four
different types of errors on network properties: edge deletion,
node deletion, edge addition and node addition. Accuracy for
nearly all evaluated measures, i.e. degree and different types
of centrality, decreased as the number of errors increased.
However, they found that properties of observed networks,
even with errors, re"ected the properties of their synthetic
networks. Wang et al. (2012) expanded upon this analysis by
testing real-world networks and exploring different types of
error. Interestingly, they found that false aggregation, which
occurs when two nodes are wrongly described as one node, had
a major effect on centrality.

Not only is false aggregation inherent to species assign-
ment, it may also be introduced by taxonomic agglomeration
of species. Hence, network properties may be far less robust
when abundance data are generalized to higher taxonomic lev-
els. This indicates that there is a cost associated with taxonomic
agglomeration; if the network is agglomerated, in silico experi-
ments may not be as reliable as the global structure of the net-
work is changed. Moreover, network properties like the cluster-
ing coef!cient or node centralities will change.

Overall, publishing a con!dence estimate would allow read-
ers to judge network properties appropriately. Frantz and Carley
(2017) developed a statistic, the con!dence level, that quanti-
!es how reliable centrality (i.e. degree, betweenness) estimates
are when the false negative error rate is known. While such a
statistic would be valuable for microbiome studies, we do not
knowwhat the error rates are, andhow they relate to sequencing
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• With complex ecosystems in situ, it is hard to know 
whether two species do not interact (confirming the 
negative is harder than confirming the positive)

• That means that we can only assess sensitiviy in situ
• In vitro, we can measure all pair-wise interactions 

comprehensively and thus can assess accuracy
• But we don’t know whether interactions in vitro also 

happen in situ
• And there may be higher-order interactions (roughly: 

an interaction between two species that is modified by 
the presence of additional species)

The challenges of biological validation
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Figure 7. Types of benchmark suites for evaluation of network inference tools.
(A) Simulated datasets using different models can help evaluate whether tools
are able to identify ecological interactions and network properties. (B) Syn-
thetic communities can provide a ground-truth network with known interac-
tions, which can then be used to evaluate tool precision on real-world data.
(C) Network modules can be associated with speci!c environmental factors or
metabolic properties. Inferred networks could be evaluated for their visualiza-
tion of such modules, if prior biological knowledge is available. (D) A reference
database could be used to match inferred edges to known interactions. In this
way, the sensitivity of network inference can be assessed for real-world commu-
nities. While it is straightforward to assess precision in simulated and synthetic
communities, it is dif!cult to measure it for real-world communities, since the
absence of a predicted interaction is hard to prove.

pre-processing affects microbial network inference, network in-
ference tool developers would bene!t from such a resource.

However, NeSSM output, as other simulations, may not
re"ect real-world microbial communities. For example, we
assumed in our simulation that microbial communities fol-
low relatively simple Lotka–Volterra dynamics. As real-world
communities may only partially be governed by such dynam-
ics and since we did not simulate measurement noise, tool
performance on our simulated datasets will differ from the
real-world situation. At the same time, in most cases we do
not know the interactions and dynamics underlying real-world
microbiomes, so performance cannot be evaluated on these
datasets. Data from synthetic communities would provide an
intermediate representation of complexity. For sequencing
analysis, the mockrobiota resource, which contains data from
mock communities, serves this purpose (Bokulich et al. 2016).

Yet, synthetic communities face similar limitations asmock-
robiota: they are still poor re"ections of real-world data, as they
only contain a fraction of the diversity and noise. While there is
no complete ground truth available for real-world datasets (e.g.
all interactions and processes have been quanti!ed), a database
could be constructed that would contain known associations.
This could be used to conclude whether inferred networks are
supported by literature, or to more systematically evaluate to
what extent network structure re"ects ecology. Fig. 7 provides
an illustration of such benchmarks. With different types of

benchmarks available, we can expect a more diverse range
of performance estimators. These would allow users to make
more informed choices regarding the network inference tool
and the experimental design.

Statistical robustness of network properties

Overall, there are some key methodological issues that need to
be resolved to reduce bias in the !eld. Such issues go beyond the
performance of microbial network inference tools, and require
researchers to understand the limitations of their approaches.
Firstly, the number of errors in microbial association networks
is large and may be mitigated with appropriate pre-processing
steps. Yet, the high false positive rate of these tools and ap-
parent sensitivity to settings implies that statistical robustness
of networks properties (in the sense that they are not affected
by different settings, missing values, noise or errors) may be
low.

Conclusions drawn from association networks would there-
fore bene!t from statistical robustness analysis. The central-
ity of a node could be reported together with a con!dence
interval or some other measure of statistical robustness. For
example, networks can be rewired while preserving the de-
gree distribution and number of associations (Karrer, Levina
and Newman 2008). The authors used this rewiring strategy
to calculate a ‘variation of information’ coef!cient. This coef-
!cient quanti!es how similar an emergent property (e.g. be-
tweenness centrality) of a slightly rewired network was to the
original network; if the network property is statistically robust,
the coef!cient is small. Hence, their coef!cient identi!es emer-
gent properties that would change if some of the edges are in-
correct. It may not be sensible to report hub species if their
con!dence interval overlaps with ∼50% of the nodes in the
network.

While the previous example addresses statistical robust-
ness, the coef!cient does not explicitly address incomplete data.
Borgatti, Carley and Krackhardt (2006) tested the effect of four
different types of errors on network properties: edge deletion,
node deletion, edge addition and node addition. Accuracy for
nearly all evaluated measures, i.e. degree and different types
of centrality, decreased as the number of errors increased.
However, they found that properties of observed networks,
even with errors, re"ected the properties of their synthetic
networks. Wang et al. (2012) expanded upon this analysis by
testing real-world networks and exploring different types of
error. Interestingly, they found that false aggregation, which
occurs when two nodes are wrongly described as one node, had
a major effect on centrality.

Not only is false aggregation inherent to species assign-
ment, it may also be introduced by taxonomic agglomeration
of species. Hence, network properties may be far less robust
when abundance data are generalized to higher taxonomic lev-
els. This indicates that there is a cost associated with taxonomic
agglomeration; if the network is agglomerated, in silico experi-
ments may not be as reliable as the global structure of the net-
work is changed. Moreover, network properties like the cluster-
ing coef!cient or node centralities will change.

Overall, publishing a con!dence estimate would allow read-
ers to judge network properties appropriately. Frantz and Carley
(2017) developed a statistic, the con!dence level, that quanti-
!es how reliable centrality (i.e. degree, betweenness) estimates
are when the false negative error rate is known. While such a
statistic would be valuable for microbiome studies, we do not
knowwhat the error rates are, andhow they relate to sequencing
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pre-processing affects microbial network inference, network in-
ference tool developers would bene!t from such a resource.

However, NeSSM output, as other simulations, may not
re"ect real-world microbial communities. For example, we
assumed in our simulation that microbial communities fol-
low relatively simple Lotka–Volterra dynamics. As real-world
communities may only partially be governed by such dynam-
ics and since we did not simulate measurement noise, tool
performance on our simulated datasets will differ from the
real-world situation. At the same time, in most cases we do
not know the interactions and dynamics underlying real-world
microbiomes, so performance cannot be evaluated on these
datasets. Data from synthetic communities would provide an
intermediate representation of complexity. For sequencing
analysis, the mockrobiota resource, which contains data from
mock communities, serves this purpose (Bokulich et al. 2016).

Yet, synthetic communities face similar limitations asmock-
robiota: they are still poor re"ections of real-world data, as they
only contain a fraction of the diversity and noise. While there is
no complete ground truth available for real-world datasets (e.g.
all interactions and processes have been quanti!ed), a database
could be constructed that would contain known associations.
This could be used to conclude whether inferred networks are
supported by literature, or to more systematically evaluate to
what extent network structure re"ects ecology. Fig. 7 provides
an illustration of such benchmarks. With different types of

benchmarks available, we can expect a more diverse range
of performance estimators. These would allow users to make
more informed choices regarding the network inference tool
and the experimental design.

Statistical robustness of network properties

Overall, there are some key methodological issues that need to
be resolved to reduce bias in the !eld. Such issues go beyond the
performance of microbial network inference tools, and require
researchers to understand the limitations of their approaches.
Firstly, the number of errors in microbial association networks
is large and may be mitigated with appropriate pre-processing
steps. Yet, the high false positive rate of these tools and ap-
parent sensitivity to settings implies that statistical robustness
of networks properties (in the sense that they are not affected
by different settings, missing values, noise or errors) may be
low.

Conclusions drawn from association networks would there-
fore bene!t from statistical robustness analysis. The central-
ity of a node could be reported together with a con!dence
interval or some other measure of statistical robustness. For
example, networks can be rewired while preserving the de-
gree distribution and number of associations (Karrer, Levina
and Newman 2008). The authors used this rewiring strategy
to calculate a ‘variation of information’ coef!cient. This coef-
!cient quanti!es how similar an emergent property (e.g. be-
tweenness centrality) of a slightly rewired network was to the
original network; if the network property is statistically robust,
the coef!cient is small. Hence, their coef!cient identi!es emer-
gent properties that would change if some of the edges are in-
correct. It may not be sensible to report hub species if their
con!dence interval overlaps with ∼50% of the nodes in the
network.

While the previous example addresses statistical robust-
ness, the coef!cient does not explicitly address incomplete data.
Borgatti, Carley and Krackhardt (2006) tested the effect of four
different types of errors on network properties: edge deletion,
node deletion, edge addition and node addition. Accuracy for
nearly all evaluated measures, i.e. degree and different types
of centrality, decreased as the number of errors increased.
However, they found that properties of observed networks,
even with errors, re"ected the properties of their synthetic
networks. Wang et al. (2012) expanded upon this analysis by
testing real-world networks and exploring different types of
error. Interestingly, they found that false aggregation, which
occurs when two nodes are wrongly described as one node, had
a major effect on centrality.

Not only is false aggregation inherent to species assign-
ment, it may also be introduced by taxonomic agglomeration
of species. Hence, network properties may be far less robust
when abundance data are generalized to higher taxonomic lev-
els. This indicates that there is a cost associated with taxonomic
agglomeration; if the network is agglomerated, in silico experi-
ments may not be as reliable as the global structure of the net-
work is changed. Moreover, network properties like the cluster-
ing coef!cient or node centralities will change.

Overall, publishing a con!dence estimate would allow read-
ers to judge network properties appropriately. Frantz and Carley
(2017) developed a statistic, the con!dence level, that quanti-
!es how reliable centrality (i.e. degree, betweenness) estimates
are when the false negative error rate is known. While such a
statistic would be valuable for microbiome studies, we do not
knowwhat the error rates are, andhow they relate to sequencing
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Biological validation of interaction prediction: 
mixed results

TARA Oceans (Lima-Mendez et 
al., Science 2015)
Tool: CoNet
Data: 16S/18S on 313 open-
ocean samples
Validation data: genus-level 
eukaryotic interactions from the 
literature (mostly endosymbiosis) 
Known pairs: 43
Sensitivity: 42% (18 found)
Precision: uncertain
Note: one novel interaction 
confirmed using microscopy

Arabidopsis root (Durán et al., Cell 
2018)
Tool: Spearman/SparCC
Data: 16S on 144 plant samples
Validation data: high-throughput 
screen of 2,862 antagonistic 
bacterial-fungal interactions
Result: predictions for ca. 24 out of 
32 tested bacterial OTUs confirmed

Phage-Host (Edwards et 
al., FEMS 2015)
Tool: Pearson
Data: 3025 global 
metagenomic samples 
Validation data: Known 
hosts for 820 phages
Sensitivity: hosts correctly 
predicted for 9.5% of the 
phages (78 found)
Precision: uncertain

Artificial community (Biswas et al., 
Lecture Notes in Bioinformatics 2015)
Tool: MInt
Data: 16S on synthetic 9-species 
community
Validation data: co-growth on plates
Result: 2 out of 2 edges confirmed
100% accuracy (no false negatives)

Note that global 
metagenomic data set 
filters for cosmopolitan 
phages, however tested 
phages may not be 
cosmopolitan
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Questions so far?



Part II: Microbial network analysis

randomized and degree-preserving positive control networks,
respectively. The anuran-reported p values (Z-score test) confirm
the observed trends; the set sizes of all but one tested difference
of intersections (differences up to 0.5) are different when
comparing the input networks to the negative control networks
(p < 0.0001). Only the set size of the two-network difference is not
significantly different compared to the degree-preserving nega-
tive control networks (p= 0.17). Consequently, we could not
identify whether there were more associations conserved
between only two participants than we expect from the degree
distribution alone.
Only three associations occur in ten or more networks. Hence,

we concluded that there is a low-prevalence CAN, but there are no
associations that are conserved across most or even half of the
individuals. Moreover, the resampling analysis demonstrates that
the number of networks is insufficient to identify the size and
prevalence of the CAN (Additional File 1: Fig. S1). A simulation
shows that both difference and intersection should stabilize after
a certain number of networks (Additional File 1: Fig. S2), but this is
not observed for the resampling analysis. The simulation suggests
that 30–40 networks would be necessary to find associations
present in 33% of networks.
Only four taxa, which were assigned to Dorea, Blautia,

Clostridiales, and Ruminococcaceae, had an uncorrected p value
below 0.15 for any of the permutation tests comparing the
distributions of degree, betweenness or closeness centralities
(Additional File 1: Fig. S3). Low p values were not found for
comparisons to degree-preserving negative control networks,
suggesting that degree distribution alone can sufficiently explain
high centrality rankings.
As the intersection of four participants was larger than expected

from the negative control networks, the CAN from this intersec-
tion was further investigated (Fig. 3). The CAN was divided in three
clusters with the Walktrap algorithm [29]. Of the two larger
clusters, one contains Dorea, Blautia, and Faecalibacterium as its

highest-degree nodes, while the other contains Sporobacter, a
group of Ruminococcaceae members, and a group of Clostridiales
members as its highest-degree nodes. Clusters were named after
their most central nodes. Because enterotypes were not equally
distributed across individuals, we could not carry out any statistics
to connect network clusters to enterotypes. However, the overlay
of differences in relative abundance across the network suggests
that the Ruminococcaceae taxon specifically was more abundant
in the Ruminococcaceae enterotype, while the opposite was true
for the Bacteroides node. Consequently, there may be a link
between CAN structure and enterotype assignment, which could
be driven by stool moisture [27].

The sponge CAN links to HMA–LMA status
We analyzed ten sponge order-specific networks that we inferred
from Sponge Microbiome project data [31]. Due to their sessile
lifestyle, sponges protect themselves from overgrowth, predation,
and competition through production of bioactive compounds
[34]. Such compounds may be produced by the sponges
themselves or by their microbial symbionts [35]. Consequently,
sponges may be expected to harbor symbiotic species that
improve sponge health. While their open connection with their
surroundings suggests that part of their microbiome may be
transient, stable core microbiomes have been identified [36].
Therefore, our toolbox provides an opportunity to investigate
conserved associations across sponges.
Networks were constructed with CoNet [2]. These networks had

a median edge number of 137, with the smallest network
containing 56 edges and the largest 1735 edges. We confirmed
that a different network inference tool, FlashWeave, was able to
recover many of the same associations despite large differences in
network size (Additional File 1: Fig. S4) [7].
Intersection differences up to six networks were significantly

larger than differences generated from the randomized and
degree-preserving negative control networks (p > 0.0001) (Fig. 4).

Difference in relative abundance between 
Ruminococcaceae and other enterotypes 

-0.12 0.04
Cluster

Alistipes

Blautia

Ruminococcaceae

0

Fig. 3 Core association network (CAN) constructed from associations present in at least four participants. Associations present in at least
four networks were included in the CAN, which was clustered with the Walktrap method for community detection. Clusters are named after
the most central taxa. Node color is mapped to the difference between median relative abundances for the Ruminococcaceae enterotype
compared to other enterotypes. Therefore, the pink color indicates that a taxon was more abundant in the Ruminococcaceae enterotype,
while a green color suggests that the taxon was less abundant in that enterotype. Node labels for higher taxonomic levels indicate that the
taxon is an unclassified member of a taxonomic group. All edge weights were positive.
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only exceptions being posterior fornix, mid-vagina, and antecu-
bital fossae, which tended toward too few phylotypes to reach
significance; see Figure 3D and Table S2), again confirming the
microbiome’s habitat-driven modularity. When calculating net-
work properties in a body-area-specific manner, we found that the
overall average path length between nodes in the oral cavity,
which contributes most of the samples, was much larger (,3.4)
than those of the other body areas (ranging from ,1.1 to ,2.0). In
addition to supporting the aforementioned degree of inter-site
habitat formation in the oral cavity, this intriguingly suggests that
other body sites in which fewer samples are currently available (see
Table 1) have not yet exhausted the detection of microbial
relationships in the human microbiome. More samples and greater
sequencing depth may further improve detection power.

Key taxa including members of the Firmicutes act as
network hubs coordinating many relationships
throughout the microbiome

We next examined the associations of individual clades with
respect to interaction degree, observing highly connected ‘‘hub’’

clades to be found within each body area. Two classes of hubs
appeared in the association network: clades highly connected
within one body site, and clades acting as ‘‘connectors’’ between
multiple body sites. Hubs included both specific taxa (e.g.
Porphyromonas, see Figure 3A, Table S3) and larger taxonomic
groupings (e.g. the phylum Firmicutes). Within-site hubs were
often, although not always, abundant signature taxa (detailed
below), high-degree exceptions including Atopobium on the tongue
(28 total associations, 16 within-site) and Selenomonas on both tooth
plaques (20 total/19 within and 7 total/3 within for supra- and
subgingival, respectively). The latter provides a striking example of
the niche-specificity of these low-abundance within-site interac-
tors, as Selenomonas averages only 1.1% and 1.2% of the sub- and
supragingival plaque communities, respectively, but associates
preferentially (20 of 27, 74%) with members of the greater oxygen
availability supragingival community. The clade’s detection as a
within-site hub thus corresponds with the ecology that might be
expected of an organism known to be oxygen-sensitive, fastidious,
and grown best in co-culture [42].

Between-site hubs typically operated among body sites within
the same area as described above, with two of the five most

Figure 2. Significant co-occurrence and co-exclusion relationships among the abundances of clades in the human microbiome. A
global microbial interaction network capturing 1,949 associations among 452 clades at or above the order level in the human microbiome, reduced
for visualization from the complete network in Figure S1. Each node represents a bacterial order, summarizing one or more genus-level phylotypes
and family-level taxonomic groups. These are colored by body site, and each edge represents a significant co-occurrence/co-exclusion relationship.
Edge width is proportional to the significance of supporting evidence, and color indicates the sign of the association (red negative, green positive).
Self-loops indicate associations among phylotypes within an order; for a full network of all phylotypes and clades, see Figure S1. A high degree of
modularity is apparent within body areas (skin, urogenital tract, oral cavity, gut, and airways) and within individual body sites, with most communities
forming distinct niches across which few microbial associations occur.
doi:10.1371/journal.pcbi.1002606.g002

Human Microbiome Co-occurrence Relationships
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• 242 healthy individuals
• sampled in up to 18 body sites
• 16S & metagenomic sequencing
• Metadata

Example 1: Human Microbiome Project data

The Human Microbiome Project Consortium.
Nature 486, 207-214 (2012).
Nature 486, 215-221 (2012).M
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intermediate colonizers

late colonizers
colonizer status unknown

central Corynebacterium filament and the surrounding Strepto-
coccus (23). We detected Porphyromonas cells sometimes forming
separate corncobs, but also present in mixed corncobs immediately
adjacent to Streptococcus. This arrangement raises the question
of whether the Porphyromonas cells are in direct competition
with Streptococcus, for example competing for attachment sites
on the Corynebacterium filament that allow the attached cell to
be bathed in the surrounding nutrient-rich saliva. Alternatively, it
is conceivable that Streptococcus and Porphyromonas may facilitate
each other’s attachment in the corncob and thereby gain some
cross-feeding metabolic advantage. The positioning of Haemo-
philus/Aggregatibacter in corncobs, by contrast, was not directly
adjacent to the central filament in the absence of Streptococcus.
This arrangement could arise simply from the binding properties
of the cells, if they find attachment sites only on Streptococcus, or
alternatively could reflect a metabolic need for close proximity to
Streptococcus. Whether each taxon–taxon interaction in corncobs
is primarily mutualistic, commensal, or parasitic is a subject for
future research, as is the degree to which the relationships might
change depending on local conditions, and the degree to which
active competition shapes the composition and spatial organiza-
tion of the assemblage. Similar questions arise for the cells in the
filament-dense annulus and the hedgehog base.
From the point of view of microenvironments inhabited by the

component cells of the hedgehog, one taxon stands out as being part
of multiple communities: a single filament of Corynebacterium may
experience several distinctive microenvironments along its length.
The proximal part of the filament inhabits the hedgehog base, which
is largely dominated by Corynebacterium but may contain Actino-
myces and is also populated by a scattering of other cells. Farther
along its length, theCorynebacterium filament traverses the filament-
rich annulus, where its neighbors consist of Fusobacterium, Lepto-
trichia, and Capnocytophaga. At its distal end, the Corynebacterium
filament is encased in a corncob shell of Streptococcus and Por-
phyromonas, with frequently abundant Haemophilus/Aggregatibacter
and Neisseriaceae. These different environments may alter the local
physiology of Corynebacterium, even within a single filament.

Relation to Previous Models of Plaque Structure and Development.
The prevalence of hedgehog structures alters our understanding
of the dynamics of colonization of oral surfaces and the succes-
sional development of plaque. Clean enamel, glass, or hydroxy-
apatite surfaces in the mouth are initially colonized by a mixed
community in which Streptococcus and Actinomyces are prominent
(32–34). Previous models of development and succession in
plaque, after initial colonization, assign a central role to Fuso-
bacterium spp. in physically linking early and late colonizers (9, 35)
or creating the conditions necessary for colonization of plaque by
pathogens (1, 36, 37). Whether these models were meant to de-
scribe interactions in supragingival as opposed to subgingival
plaque is not entirely clear; the work on initial colonization gen-
erally used substrates mounted supragingivally in the mouth,
whereas the pathogens in the climax community were subgingival
anaerobes. The genus Corynebacterium is conspicuously absent
from the early microbiota colonizing enamel and from these
models but is one of the more abundant plaque taxa detected in
cultivation-independent analyses based on sequencing of rRNA
genes (18, 20, 38). These cultivation-independent analyses repre-
sent neither the very earliest stages in colonization nor the highly
mature and complex subgingival biofilm associated with perio-
dontitis, but instead represent ordinary daily plaque accumulation
sampled from healthy subjects. The results that we present here,
using HMP sequencing data and samples of ordinary plaque from
healthy volunteers, show Corynebacterium as the taxon that pro-
vides a physical link to each of the other taxa in the hedgehog
structure. Our results do not suggest a central role for Fusobacterium

Fig. 8. A cauliflower structure in plaque composed of Lautropia, Strepto-
coccus, Haemophilus/Aggregatibacter, and Veillonella. Scattered cells of Pre-
votella, Rothia, and Capnocytophaga are also visible.

Fig. 9. Summary hypothesis for interpretation of hedgehog structures.
Corynebacterium filaments bind to an existing biofilm containing Strepto-
coccus and Actinomyces. At the distal tips of the Corynebacterium filaments,
corncob structures form in which the filaments are surrounded by cocci,
including Streptococcus and Porphyromonas, in direct contact with the Co-
rynebacterium filament as well as Haemophilus/Aggregatibacter in contact
with Streptococcus. Clusters of Neisseriaceae also occupy the periphery of the
hedgehog. The Streptococcus cells create a microenvironment rich in CO2, lac-
tate, and acetate, containing peroxide, and low in oxygen. Elongated filaments
of Fusobacterium and Leptotrichia proliferate in this low-oxygen, high-CO2

environment in an annulus just proximal to the corncob-containing peripheral
shell of the hedgehog. The CO2-requiring Capnocytophaga also proliferates
abundantly in and around this annulus. The base of the hedgehog is
dominated by Corynebacterium filaments and thinly populated by addi-
tional rods, filaments, and/or cocci.

E798 | www.pnas.org/cgi/doi/10.1073/pnas.1522149113 Mark Welch et al.
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Faust et al. (2012) PLoS Computational Biology 8 (7) e1002606.

Image taken from de Welch et al. 
PNAS, E791-E800 (2016).
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HMP data: Niche structure
Dental plaque subnetwork:



0.45 to 0.8 mm): n = 59; prokaryote-enriched
fractions (0.22 to 1.6 mm, 0.22 to 3 mm): n = 139]
were paired-end shotgun Illumina sequenced to
generate a total of more than 7.2 terabases (Tb),
29.6 T 12.7 Gb per sample (14), enabling compar-
ative analyses with the human gut microbiome for
which metagenomic data of the same order of
magnitude have been published {U.S. Human
Microbiome Project, phase I—stool [1.5 Tb; (15)]}
and the European Metagenomics of the Human
Intestinal Tract project [3.8 Tb; (16, 17)].
To generate a reference gene catalog [see also

(16, 17)], we first reconstructed the genomic con-
tent of Tara Oceans samples by metagenomic as-
sembly and gene prediction (18) and combined
these data with those from publicly available
ocean metagenomes and reference genomes (14).
Specifically, ~111.5 million (M) protein-coding nu-
cleotide sequences were predicted and clustered
at 95% nucleotide sequence identity with 24.4 M
sequences from other ocean metagenomes (14)
and 1.6 M sequences from ocean prokaryotic (n =
433) and viral (n = 114) reference genomes (14).
This resulted in a global Ocean Microbial Refer-
ence Gene Catalog (OM-RGC), which comprises
>40 M nonredundant representative genes from
viruses, prokaryotes, and picoeukaryotes (Fig. 1B).
Compared to a human gut microbial reference
gene catalog (16), the OM-RGC comprises more
than four times the number of genes, most of
which (59%) appear prokaryotic (Fig. 1B). Almost
28% of the genes could not be taxonomically an-
notated. A large fraction is, however, likely of viral
origin, because in size fractions targeting orga-
nisms smaller than 0.22 mm, 37% (SD = 9%) of the
profiled sequence data mapped to nonannotated
genes [see also (19)], whereas in prokaryote-
enriched samples, this fraction decreased to 9%
(SD = 2%). As expected, eukaryotic genes (3.3%)
include those from protists (unicellular eukary-
otes) but also from multicellular, larger organisms
whose gametes or fragmented cells may have been
sampled (14).
In total, 81.4% of the genes were exclusive to

Tara Oceans samples, with only 5.11 and 0.44%
overlapping with GOS sequences and reference
genomes, respectively (Fig. 1B), which highlights
the extent of the unexplored genomic potential
in our oceans. Rarefaction analysis showed that
the rate of new gene detection decreased to 0.01%
by the end of sampling (Fig. 1C), suggesting that
the abundant microbial sequence space appears
well represented, at least for the targeted size
ranges, sampling locations, and depths. Genes
found in only one sample amounted to 3.6% of
the OM-RGC, which may originate from localized
specialists.
To complement the work of Tara Oceans Con-

sortium partners who analyzed viral and protist-
enriched size fractions (19, 20) and integrated data
across domains of life (21, 22), we focused our
analyses on 139 prokaryote-enriched samples,
which included 63 surface water samples (5 m;
SD = 0 m), 46 epipelagic subsurface water samples
mostly from the DCM (71 m; SD = 41 m), and 30
mesopelagic samples (600 m; SD = 220 m). Using
this set, we revealed that gene novelty generally

1261359-2 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 1. Tara Oceans captures novel genetic diversity in the global ocean microbiome. (A) Geographic
distribution of 68 (out of >200 in total) representative TaraOceans sampling stations atwhich seawater samples
and environmental data were collected frommultiple depth layers. (B) Targeting viruses andmicrobial organisms
up to 3 mm in size, deep Illumina shotgun sequencing of 243 samples, followed by metagenomic assembly and
gene prediction, resulted in the identification of >111.5Mgene-coding sequences.The currently largest humangut
microbial reference gene catalog (16) was built with similar amounts of data but from a substantially higher
numberof samples (n= 1,267).Genes identified in our studywere clustered togetherwith >26Msequences from
publicly available data [external genes; see (14)] to yield a set of >40 M reference genes (top left), which equals
more than four times the number of genes in the human gut microbial reference gene catalog (top right). The
combined clustering of genes identified in Tara Oceans samples with those obtained from public resources
allowed us to annotate genes according to the composition of each cluster. For example, a gene was labeled as:
“TARA/GOS” if itsoriginal clustercontainedsequences frombothTaraOceansandGOSsamples.More than81%
of the genes were found only in samples collected by Tara Oceans. A breakdown of taxonomic annotations
(bottom left) shows that the reference gene catalog ismainly composed of bacterial genes (LUCAdenotes genes
that could not unambiguously be assigned to a domain of life). (C) Rarefaction curve of detected genes for 100-
fold permuted sampling orders shows only a small increase in newly detected genes toward the end of sampling.
Thesubplot comparessequencingdepth-normalized rarefactioncurves for 139prokaryoticoceansamples (black)
mapped to the prokaryotic subset of the OM-RGC (24.4 M genes) and the same number of random (100-fold
permuted) human gut samples (pink) mapped to a human gut gene catalog (16).The lower asymptote for the
human gut suggests that the ocean harbors a greater genetic diversity. (D) For the subset of 139 prokaryotic
samples analyzed, the fraction of detected genes that hadpreviously been available in public databases (blue) are
compared to those thatwerenewly identified in samples collectedbyTaraOceans (red).Thebreakdownbyocean
regionanddepths shows that theSouthernOceanand themesopelagic zonehadbeenvastly undersampledprior
to Tara Oceans. NA, not available. Abbreviations: MS, Mediterranean Sea; RS, Red Sea; IO, Indian Ocean; SAO,
South Atlantic Ocean; SO, Southern Ocean; SPO, South Pacific Ocean; NPO, North Pacific Ocean; NAO, North
Atlantic Ocean; GOS, Sorcerer II Global Ocean Sampling expedition; MetaG, genes of metagenomic origin; RefG,
genes fromreferencegenomesequences; LUCA, last universal commonancestor; SRF, surfacewater layer;DCM,
deep chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MESO, mesopelagic zone.

TARA OCEANS 

Example 2: TARA Oceans data 
• Global marine expedition, >200 stations spanning 8 
oceanic regions, sampled at 2-3 depths
• 18S (4 cell size fractions), 16S, viral contigs

de Vargas et al. Science 348, 1261605 (2015).
Sunagawa et al. Science 348, 1261359 (2015).
Pesant et al. Scientific Data 2, 150023 (2015).M
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• Interaction candidate in TARA Ocean data

TARA: Interaction prediction

Flatworm with photosynthetic 
microalgal endosymbiontsAbundance profiles from 18S 

marine phytoplankton data

Prediction Experimental validation 
(microscopy)

Lima-Mendez*, Faust*, Henry* et al. (2015) “Determinants of community 
structure in the global plankton interactome” Science 348, 1262073.M
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ARTICLE RESEARCH

Tara Oceans genomics data and carbon export. This method deline-
ates communities in the euphotic zone that are the most associated 
with carbon export rather than predicting organisms associated with 
sinking particles.

In brief, the WGCNA approach builds a network in which nodes are 
features (in this case plankton lineages or gene functions) and links are 
evaluated by the robustness of co-occurrence scores. WGCNA then 
clusters the network into modules (hereafter denoted subnetworks) 
that can be examined to find significant subnetwork–trait relationships. 
We then filtered each subnetwork using a partial least square (PLS) 
analysis that emphasizes key nodes (based on the variable importance 
in projection (VIP) scores; see Methods and Extended Data Fig. 1). 
These particular nodes are mandatory to summarize a subnetwork (or 
community) related to carbon export. In particular, they are of interest 
for evaluating: (i) subnetwork robustness; and (ii) predictive power for 
a given trait (see Methods and Extended Data Fig. 1).

We applied WGCNA to the relative abundance tables of eukaryotic, 
prokaryotic and viral lineages23–25 and identified unique subnetworks 
significantly associated with carbon export within each data set (see 
Methods and Supplementary Tables 2–4). The eukaryotic subnetwork 
(subnetwork–trait relationship to carbon export, Pearson correlation 
r = 0.81, P = 5 × 10−15) contained 49 lineages (Extended Data Fig. 2a 
and Supplementary Table 2) among which 20% represented photosyn-
thetic organisms (Fig. 2a and Supplementary Table 2). Surprisingly, this 
small subnetwork’s structure correlates very strongly to carbon export 
(r = 0.87, P = 5 × 10−16, Extended Data Fig. 2d) and it predicts as much 
as 69% (leave-one-out cross-validated (LOOCV), R2 = 0.69) of the vari-
ability in carbon export (Extended Data Fig. 2g). Only ∼6% of the sub-
network nodes correspond to diatoms and they show lower VIP scores 
than dinoflagellates (Supplementary Table 2). This is probably because 
our samples are not from silicate-replete conditions where diatoms 

were blooming. Furthermore, our analysis did not incorporate data  
from high latitudes, where diatoms are known to be particularly impor-
tant for carbon export, so this result suggests that dinoflagellates have 
a heretofore unrecognized role in carbon export processes in subtrop-
ical oligotrophic ‘type’ ecosystems. More precisely, four of the five 
highest VIP scoring eukaryotic lineages that correlated with carbon 
export at 150 m were heterotrophs such as Metazoa (copepods), non- 
photosynthetic Dinophyceae, and Rhizaria (Fig. 2a and Supplementary 
Table 2). These results corroborate recent metagenomics analysis of 
microbial communities from sediment traps in the oligotrophic North 
Pacific subtropical gyre34. Consistently, in situ imaging surveys have 
revealed Rhizarian lineages, made up of large fragile organisms such 
as the Collodaria, to represent an until now under-appreciated com-
ponent of global plankton biomass (T. Biard et al., submitted), which 
here also appear to be of relevance for carbon export. Another 14% 
of lineages from the subnetwork correspond to parasitic organisms, a 
largely unexplored component of planktonic ecosystems when studying 
carbon export.

The prokaryotic subnetwork that associated most significantly 
with carbon export at 150 m (subnetwork–trait relationship to car-
bon export, r = 0.32, P = 9 × 10−3) contained 109 OTUs (Extended 
Data Fig. 2b and Supplementary Table 3), its structure correlated 
well to carbon export (r = 0.47, P = 5 × 10−6, Extended Data Fig. 2e) 
and it could predict as much as 60% of the carbon export variability 
(LOOCV, R2 = 0.60) (Extended Data Fig. 2h). By far the highest VIP 
score within this community was assigned to Synechococcus, followed 
by Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and 
Arcobacter (Fig. 2b and Supplementary Table 3). Noteworthy, the 
genus Prochlorococcus and SAR11 clade fall out of this community, 
while the significance of Synechococcus for carbon export could be vali-
dated using absolute cell counts estimated by flow cytometry (r = 0.64, 

Figure 2 | Ecological networks reveal key 
lineages associated with carbon export at 150 m 
at global scale. The relative abundances of taxa in 
selected subnetworks were used to estimate carbon 
export and to identify key lineages associated with 
the process. a, The selected eukaryotic subnetwork 
(n = 49, see Supplementary Table 2) can predict 
carbon export with high accuracy (PLS regression, 
LOOCV, R2 = 0.69, see Extended Data Fig. 2g). 
Lineages with the highest VIP score (dot size is 
proportional to the VIP score in the scatter plot) 
in the PLS are depicted as red dots corresponding 
to three Rhizaria (Collodaria, Collozoum inerme 
and Sticholonche sp.), one copepod (Oithona sp.), 
one siphonophore (Lilyopsis), three Dinophyceae 
and one ciliate (Spirotontonia turbinata). b, The 
selected prokaryotic subnetwork (n = 109, see 
Supplementary Table 3) can predict carbon export 
with good accuracy (PLS regression, LOOCV, 
R2 = 0.60, see Extended Data Fig. 2h). c, The 
selected viral population subnetwork (n = 277,  
see Supplementary Table 4) can predict carbon 
export with high accuracy (PLS regression, 
LOOCV, R2 = 0.89, see Extended Data Fig. 2i). 
Two viral populations with a high VIP score  
(red dots) are predicted as Synechococcus phages 
(see Supplementary Table 4).
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TARA: Linking taxa to function

Guidi et al. (2016) “Plankton networks driving carbon export in the oligotrophic ocean” Nature 532, 465-470.

• Clustering of TARA oceans microbial network using WGCNA
• Cluster representatives screened for strong association to carbon 

export: Synechococcus (cyanobacterium) identified
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Tara Oceans genomics data and carbon export. This method deline-
ates communities in the euphotic zone that are the most associated 
with carbon export rather than predicting organisms associated with 
sinking particles.

In brief, the WGCNA approach builds a network in which nodes are 
features (in this case plankton lineages or gene functions) and links are 
evaluated by the robustness of co-occurrence scores. WGCNA then 
clusters the network into modules (hereafter denoted subnetworks) 
that can be examined to find significant subnetwork–trait relationships. 
We then filtered each subnetwork using a partial least square (PLS) 
analysis that emphasizes key nodes (based on the variable importance 
in projection (VIP) scores; see Methods and Extended Data Fig. 1). 
These particular nodes are mandatory to summarize a subnetwork (or 
community) related to carbon export. In particular, they are of interest 
for evaluating: (i) subnetwork robustness; and (ii) predictive power for 
a given trait (see Methods and Extended Data Fig. 1).

We applied WGCNA to the relative abundance tables of eukaryotic, 
prokaryotic and viral lineages23–25 and identified unique subnetworks 
significantly associated with carbon export within each data set (see 
Methods and Supplementary Tables 2–4). The eukaryotic subnetwork 
(subnetwork–trait relationship to carbon export, Pearson correlation 
r = 0.81, P = 5 × 10−15) contained 49 lineages (Extended Data Fig. 2a 
and Supplementary Table 2) among which 20% represented photosyn-
thetic organisms (Fig. 2a and Supplementary Table 2). Surprisingly, this 
small subnetwork’s structure correlates very strongly to carbon export 
(r = 0.87, P = 5 × 10−16, Extended Data Fig. 2d) and it predicts as much 
as 69% (leave-one-out cross-validated (LOOCV), R2 = 0.69) of the vari-
ability in carbon export (Extended Data Fig. 2g). Only ∼6% of the sub-
network nodes correspond to diatoms and they show lower VIP scores 
than dinoflagellates (Supplementary Table 2). This is probably because 
our samples are not from silicate-replete conditions where diatoms 

were blooming. Furthermore, our analysis did not incorporate data  
from high latitudes, where diatoms are known to be particularly impor-
tant for carbon export, so this result suggests that dinoflagellates have 
a heretofore unrecognized role in carbon export processes in subtrop-
ical oligotrophic ‘type’ ecosystems. More precisely, four of the five 
highest VIP scoring eukaryotic lineages that correlated with carbon 
export at 150 m were heterotrophs such as Metazoa (copepods), non- 
photosynthetic Dinophyceae, and Rhizaria (Fig. 2a and Supplementary 
Table 2). These results corroborate recent metagenomics analysis of 
microbial communities from sediment traps in the oligotrophic North 
Pacific subtropical gyre34. Consistently, in situ imaging surveys have 
revealed Rhizarian lineages, made up of large fragile organisms such 
as the Collodaria, to represent an until now under-appreciated com-
ponent of global plankton biomass (T. Biard et al., submitted), which 
here also appear to be of relevance for carbon export. Another 14% 
of lineages from the subnetwork correspond to parasitic organisms, a 
largely unexplored component of planktonic ecosystems when studying 
carbon export.

The prokaryotic subnetwork that associated most significantly 
with carbon export at 150 m (subnetwork–trait relationship to car-
bon export, r = 0.32, P = 9 × 10−3) contained 109 OTUs (Extended 
Data Fig. 2b and Supplementary Table 3), its structure correlated 
well to carbon export (r = 0.47, P = 5 × 10−6, Extended Data Fig. 2e) 
and it could predict as much as 60% of the carbon export variability 
(LOOCV, R2 = 0.60) (Extended Data Fig. 2h). By far the highest VIP 
score within this community was assigned to Synechococcus, followed 
by Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and 
Arcobacter (Fig. 2b and Supplementary Table 3). Noteworthy, the 
genus Prochlorococcus and SAR11 clade fall out of this community, 
while the significance of Synechococcus for carbon export could be vali-
dated using absolute cell counts estimated by flow cytometry (r = 0.64, 

Figure 2 | Ecological networks reveal key 
lineages associated with carbon export at 150 m 
at global scale. The relative abundances of taxa in 
selected subnetworks were used to estimate carbon 
export and to identify key lineages associated with 
the process. a, The selected eukaryotic subnetwork 
(n = 49, see Supplementary Table 2) can predict 
carbon export with high accuracy (PLS regression, 
LOOCV, R2 = 0.69, see Extended Data Fig. 2g). 
Lineages with the highest VIP score (dot size is 
proportional to the VIP score in the scatter plot) 
in the PLS are depicted as red dots corresponding 
to three Rhizaria (Collodaria, Collozoum inerme 
and Sticholonche sp.), one copepod (Oithona sp.), 
one siphonophore (Lilyopsis), three Dinophyceae 
and one ciliate (Spirotontonia turbinata). b, The 
selected prokaryotic subnetwork (n = 109, see 
Supplementary Table 3) can predict carbon export 
with good accuracy (PLS regression, LOOCV, 
R2 = 0.60, see Extended Data Fig. 2h). c, The 
selected viral population subnetwork (n = 277,  
see Supplementary Table 4) can predict carbon 
export with high accuracy (PLS regression, 
LOOCV, R2 = 0.89, see Extended Data Fig. 2i). 
Two viral populations with a high VIP score  
(red dots) are predicted as Synechococcus phages 
(see Supplementary Table 4).
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Tara Oceans genomics data and carbon export. This method deline-
ates communities in the euphotic zone that are the most associated 
with carbon export rather than predicting organisms associated with 
sinking particles.

In brief, the WGCNA approach builds a network in which nodes are 
features (in this case plankton lineages or gene functions) and links are 
evaluated by the robustness of co-occurrence scores. WGCNA then 
clusters the network into modules (hereafter denoted subnetworks) 
that can be examined to find significant subnetwork–trait relationships. 
We then filtered each subnetwork using a partial least square (PLS) 
analysis that emphasizes key nodes (based on the variable importance 
in projection (VIP) scores; see Methods and Extended Data Fig. 1). 
These particular nodes are mandatory to summarize a subnetwork (or 
community) related to carbon export. In particular, they are of interest 
for evaluating: (i) subnetwork robustness; and (ii) predictive power for 
a given trait (see Methods and Extended Data Fig. 1).

We applied WGCNA to the relative abundance tables of eukaryotic, 
prokaryotic and viral lineages23–25 and identified unique subnetworks 
significantly associated with carbon export within each data set (see 
Methods and Supplementary Tables 2–4). The eukaryotic subnetwork 
(subnetwork–trait relationship to carbon export, Pearson correlation 
r = 0.81, P = 5 × 10−15) contained 49 lineages (Extended Data Fig. 2a 
and Supplementary Table 2) among which 20% represented photosyn-
thetic organisms (Fig. 2a and Supplementary Table 2). Surprisingly, this 
small subnetwork’s structure correlates very strongly to carbon export 
(r = 0.87, P = 5 × 10−16, Extended Data Fig. 2d) and it predicts as much 
as 69% (leave-one-out cross-validated (LOOCV), R2 = 0.69) of the vari-
ability in carbon export (Extended Data Fig. 2g). Only ∼6% of the sub-
network nodes correspond to diatoms and they show lower VIP scores 
than dinoflagellates (Supplementary Table 2). This is probably because 
our samples are not from silicate-replete conditions where diatoms 

were blooming. Furthermore, our analysis did not incorporate data  
from high latitudes, where diatoms are known to be particularly impor-
tant for carbon export, so this result suggests that dinoflagellates have 
a heretofore unrecognized role in carbon export processes in subtrop-
ical oligotrophic ‘type’ ecosystems. More precisely, four of the five 
highest VIP scoring eukaryotic lineages that correlated with carbon 
export at 150 m were heterotrophs such as Metazoa (copepods), non- 
photosynthetic Dinophyceae, and Rhizaria (Fig. 2a and Supplementary 
Table 2). These results corroborate recent metagenomics analysis of 
microbial communities from sediment traps in the oligotrophic North 
Pacific subtropical gyre34. Consistently, in situ imaging surveys have 
revealed Rhizarian lineages, made up of large fragile organisms such 
as the Collodaria, to represent an until now under-appreciated com-
ponent of global plankton biomass (T. Biard et al., submitted), which 
here also appear to be of relevance for carbon export. Another 14% 
of lineages from the subnetwork correspond to parasitic organisms, a 
largely unexplored component of planktonic ecosystems when studying 
carbon export.

The prokaryotic subnetwork that associated most significantly 
with carbon export at 150 m (subnetwork–trait relationship to car-
bon export, r = 0.32, P = 9 × 10−3) contained 109 OTUs (Extended 
Data Fig. 2b and Supplementary Table 3), its structure correlated 
well to carbon export (r = 0.47, P = 5 × 10−6, Extended Data Fig. 2e) 
and it could predict as much as 60% of the carbon export variability 
(LOOCV, R2 = 0.60) (Extended Data Fig. 2h). By far the highest VIP 
score within this community was assigned to Synechococcus, followed 
by Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and 
Arcobacter (Fig. 2b and Supplementary Table 3). Noteworthy, the 
genus Prochlorococcus and SAR11 clade fall out of this community, 
while the significance of Synechococcus for carbon export could be vali-
dated using absolute cell counts estimated by flow cytometry (r = 0.64, 

Figure 2 | Ecological networks reveal key 
lineages associated with carbon export at 150 m 
at global scale. The relative abundances of taxa in 
selected subnetworks were used to estimate carbon 
export and to identify key lineages associated with 
the process. a, The selected eukaryotic subnetwork 
(n = 49, see Supplementary Table 2) can predict 
carbon export with high accuracy (PLS regression, 
LOOCV, R2 = 0.69, see Extended Data Fig. 2g). 
Lineages with the highest VIP score (dot size is 
proportional to the VIP score in the scatter plot) 
in the PLS are depicted as red dots corresponding 
to three Rhizaria (Collodaria, Collozoum inerme 
and Sticholonche sp.), one copepod (Oithona sp.), 
one siphonophore (Lilyopsis), three Dinophyceae 
and one ciliate (Spirotontonia turbinata). b, The 
selected prokaryotic subnetwork (n = 109, see 
Supplementary Table 3) can predict carbon export 
with good accuracy (PLS regression, LOOCV, 
R2 = 0.60, see Extended Data Fig. 2h). c, The 
selected viral population subnetwork (n = 277,  
see Supplementary Table 4) can predict carbon 
export with high accuracy (PLS regression, 
LOOCV, R2 = 0.89, see Extended Data Fig. 2i). 
Two viral populations with a high VIP score  
(red dots) are predicted as Synechococcus phages 
(see Supplementary Table 4).
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• Clostridium difficile is an intestinal pathogen in mammals
• It can thrive when killing gut microbiota with antibiotics 
• Experiment: Mice infected with C. difficile after exposure 

to different antibiotics

Buffie et al. (2014) “Precision microbiome reconstitution restores bile acid 
mediated resistance to Clostridium difficile” Nature 517, 205-208.

Example 3: Network inference from time series
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• Bacterial interaction network predicted from fecal 16S 
time series of mice by parameterising gLV model

low alpha diversity (Fig. 2a (red box)) or at early time points after anti-
biotic exposure (Fig. 2b), suggesting that recovery of more precise micro-
biota features (for example, individual species) contributed to infection
resistance. We correlated resistance with individual bacterial species abun-
dances, corresponding to operational taxonomic units (OTUs, $97%
16S sequence similarity) (Extended Data Fig. 1d), and identified 11 bac-
terial OTUs that correlated strongly with infection resistance (Fig. 2c).
These OTUs represented a small fraction of the microbiota member-
ship (6%) and comprised primarily Clostridium cluster XIVa, including
the OTU with the strongest resistance correlation, even among animals
harbouring low alpha-diversity microbiota, C. scindens (Fig. 2c).

To relate intestinal bacterial species to C. difficile resistance in humans,
we extended our study to a cohort of patients undergoing allogeneic
haematopoeietic stem-cell transplantation (allo-HSCT). The majority
of these patients were diagnosed with a haematological malignancy and
received chemotherapy and/or total body irradiation as well as anti-
biotics during transplantation (Extended Data Table 1), incurring re-
duced microbiota biodiversity associated with increased risk of bacterial
blood stream infections8 and C. difficile infection9. Compared with con-
trolled animal studies, temporal variation in antibiotic administration
and sampling times among patients complicates analysis of relation-
ships between microbiota composition and infection susceptibility. To
address these challenges, we employed a recently developed systems
biology approach10 that integrates antibiotic delivery schedules and
time-resolved microbiota data to model mathematically the microbiota
dynamics and infer which bacteria inhibit C. difficile. We included 24
allo-HSCT patients: 12 diagnosed with C. difficile infection and 12 who
were C. difficile carriers without clinical infection (Fig. 2d and Extended
Data Fig. 2). To facilitate comparisons across data sets, we clustered
murine and human microbiota together to define OTUs that together
accounted for a majority of both the human and mouse microbiota struc-
ture (Extended Data Fig. 3a–c), and applied the modelling approach to
the murine study in parallel. We compared the normalized interaction
networks from the human (Extended Data Fig. 3d) and the murine models

(Extended Data Fig. 3e) and identified bacteria displaying strong inhi-
bition against C. difficile. Despite some differences across host species
networks, the human model identified two C. difficile-inhibiting OTUs
that were conserved in the murine model (Fig. 2e, f), the strongest of
which was C. scindens, corroborating our murine correlation-based ana-
lyses (Fig. 2c).

To evaluate causality between intestinal bacteria identified in our
analyses and infection resistance, we adoptively transferred resistance-
associated bacteria. We cultured a representative consortium of four
intestinal bacterial isolates with species-level 16S similarity to OTUs
associated with C. difficile inhibition in our mouse and human analyses
(Extended Data Fig. 4) and, after antibiotic administration, animals (n 5
10) were administered a suspension containing the four-bacteria con-
sortium or vehicle (phosphate-buffered saline (PBS)) before C. difficile
infection. Additionally, since C. scindens had the strongest resistance
associations in mice and humans (Fig. 2c, e), we included this bacte-
rium in the consortium and in a third arm alone. Adoptive transfer of
the consortium or C. scindens alone ameliorated C. difficile infection
(Fig. 3a, b and Extended Data Fig. 5a) as well as associated weight loss
(Fig. 3c and Extended Data Fig. 5b) and mortality (Fig. 3d) significantly
compared with control. Transfer of the other three isolates individually,
however, did not significantly enhance infection resistance (Extended
Data Fig. 5c). Engraftment of the transferred bacteria was confirmed
(Extended Data Fig. 5d) by 16S sequence comparison with the input
and the native intestinal bacteria from our initial analyses (Fig. 2), thus
fulfilling Koch’s postulates (albeit for a microorganism and a beneficial
health outcome). The abundance of C. scindens correlated significantly
with infection resistance (Fig. 3e), suggesting that improving bacterial
engraftment efficiency may enhance the protective effects of the adopt-
ive transfer. Importantly, bacteria transfer was precise and engraftment
did not alter other aspects of microbiota structure compared with con-
trol, including density (Extended Data Fig. 5e) and biodiversity (Fig. 3f).

We next interrogated the mechanism of C. scindens-mediated C.
difficile inhibition. Some secondary bile acids can impair C. difficile
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Precision microbiome reconstitution restores bile
acid mediated resistance to Clostridium difficile
Charlie G. Buffie1,2, Vanni Bucci3,4, Richard R. Stein3, Peter T. McKenney1,2, Lilan Ling2, Asia Gobourne2, Daniel No2, Hui Liu5,
Melissa Kinnebrew1,2, Agnes Viale6, Eric Littmann2, Marcel R. M. van den Brink7,8, Robert R. Jenq7, Ying Taur1,2, Chris Sander3,
Justin Cross5, Nora C. Toussaint2,3, Joao B. Xavier2,3 & Eric G. Pamer1,2,8

The gastrointestinal tracts of mammals are colonized by hundreds
of microbial species that contribute to health, including coloniza-
tion resistance against intestinal pathogens1. Many antibiotics des-
troy intestinal microbial communities and increase susceptibility
to intestinal pathogens2. Among these, Clostridium difficile, a major
cause of antibiotic-induced diarrhoea, greatly increases morbidity
and mortality in hospitalized patients3. Which intestinal bacteria pro-
vide resistance to C. difficile infection and their in vivo inhibitory
mechanisms remain unclear. Here we correlate loss of specific bac-
terial taxa with development of infection, by treating mice with dif-
ferent antibiotics that result in distinct microbiota changes and lead
to varied susceptibility to C. difficile. Mathematical modelling aug-
mented by analyses of the microbiota of hospitalized patients iden-
tifies resistance-associated bacteria common to mice and humans.
Using these platforms, we determine that Clostridium scindens, a bile
acid 7a-dehydroxylating intestinal bacterium, is associated with resis-
tance to C. difficile infection and, upon administration, enhances
resistance to infection in a secondary bile acid dependent fashion.
Using a workflow involving mouse models, clinical studies, meta-
genomic analyses, and mathematical modelling, we identify a probi-
otic candidate that corrects a clinically relevant microbiome deficiency.
These findings have implications for the rational design of targeted
antimicrobials as well as microbiome-based diagnostics and thera-
peutics for individuals at risk of C. difficile infection.

Infection with C. difficile is a growing public health threat3. Suscepti-
bility to infection is associated with antibiotic use3, and faecal microbiota
transplant, which restores microbiota complexity, can resolve recurrent
infections4. However, the microbiome-encoded genes and biosynthetic
gene clusters5 critical for infection resistance remain largely undefined,
limiting mechanistic understanding and development of microbiota-
based therapies. We sought to identify, interrogate, and validate sources
of microbiome-mediated C. difficile resistance. We first investigated the
impact of antibiotics with diverse antimicrobial spectra on the intest-
inal microbiota and C. difficile susceptibility (Extended Data Fig. 1a).
Consistent with prior work from our group2, administration of clin-
damycin resulted in long-lasting susceptibility to infection (Fig. 1a). In
contrast, ampicillin induced transient susceptibility (Fig. 1c), whereas
enrofloxacin did not increase susceptibility to C. difficile infection (Fig. 1e).
C. difficile toxin expression correlated significantly with C. difficile abun-
dance in the intestine (Extended Data Fig. 1b). The antibiotic regimens
did not substantially alter bacterial density (Extended Data Fig. 1c), but
16S ribosomal RNA (rRNA) gene amplicon sequencing revealed that
the three antibiotics had distinct impacts on intestinal microbiota com-
position (Fig. 1b, d, f).

We exploited this variance in intestinal bacterial composition and
infection susceptibility to relate features of microbiota structure to C.
difficile inhibition. Infection susceptibility correlated with decreased

microbiota alpha diversity (that is, diversity within individuals) (Fig. 2a),
consistent with previous studies6. Using weighted UniFrac7 distances to
evaluate beta diversity (that is, diversity between individuals), we found
that although clindamycin and ampicillin administration induced dis-
tinct changes in microbiota structure, recovery of resistance corresponded
with return to a common coordinate space shared by antibiotic-naive
animals (Fig. 2b). However, these diversity metrics generally did not
resolve the susceptibility status of animals harbouring microbiota with

1Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. 2Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, USA. 3Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. 4Department of Biology, University of
Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. 5Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA.
6Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. 7Bone Marrow Transplant Service,Department of Medicine,Memorial Sloan Kettering Cancer Center, New York, New
York 10065, USA. 8Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.
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Figure 1 | Different antibiotics induce distinct changes to C. difficile
infection resistance and intestinal microbiota composition. Susceptibility to
C. difficile infection after administration of clindamycin (a), ampicillin (c),
or enrofloxacin (e). b, d, f, Intestinal microbiota composition at time points
indicated. Each stacked bar represents the mean microbiota composition
of three separately housed animals. Centre values (mean), error bars
(s.e.m.) (a, c, e).
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The gastrointestinal tracts of mammals are colonized by hundreds
of microbial species that contribute to health, including coloniza-
tion resistance against intestinal pathogens1. Many antibiotics des-
troy intestinal microbial communities and increase susceptibility
to intestinal pathogens2. Among these, Clostridium difficile, a major
cause of antibiotic-induced diarrhoea, greatly increases morbidity
and mortality in hospitalized patients3. Which intestinal bacteria pro-
vide resistance to C. difficile infection and their in vivo inhibitory
mechanisms remain unclear. Here we correlate loss of specific bac-
terial taxa with development of infection, by treating mice with dif-
ferent antibiotics that result in distinct microbiota changes and lead
to varied susceptibility to C. difficile. Mathematical modelling aug-
mented by analyses of the microbiota of hospitalized patients iden-
tifies resistance-associated bacteria common to mice and humans.
Using these platforms, we determine that Clostridium scindens, a bile
acid 7a-dehydroxylating intestinal bacterium, is associated with resis-
tance to C. difficile infection and, upon administration, enhances
resistance to infection in a secondary bile acid dependent fashion.
Using a workflow involving mouse models, clinical studies, meta-
genomic analyses, and mathematical modelling, we identify a probi-
otic candidate that corrects a clinically relevant microbiome deficiency.
These findings have implications for the rational design of targeted
antimicrobials as well as microbiome-based diagnostics and thera-
peutics for individuals at risk of C. difficile infection.

Infection with C. difficile is a growing public health threat3. Suscepti-
bility to infection is associated with antibiotic use3, and faecal microbiota
transplant, which restores microbiota complexity, can resolve recurrent
infections4. However, the microbiome-encoded genes and biosynthetic
gene clusters5 critical for infection resistance remain largely undefined,
limiting mechanistic understanding and development of microbiota-
based therapies. We sought to identify, interrogate, and validate sources
of microbiome-mediated C. difficile resistance. We first investigated the
impact of antibiotics with diverse antimicrobial spectra on the intest-
inal microbiota and C. difficile susceptibility (Extended Data Fig. 1a).
Consistent with prior work from our group2, administration of clin-
damycin resulted in long-lasting susceptibility to infection (Fig. 1a). In
contrast, ampicillin induced transient susceptibility (Fig. 1c), whereas
enrofloxacin did not increase susceptibility to C. difficile infection (Fig. 1e).
C. difficile toxin expression correlated significantly with C. difficile abun-
dance in the intestine (Extended Data Fig. 1b). The antibiotic regimens
did not substantially alter bacterial density (Extended Data Fig. 1c), but
16S ribosomal RNA (rRNA) gene amplicon sequencing revealed that
the three antibiotics had distinct impacts on intestinal microbiota com-
position (Fig. 1b, d, f).

We exploited this variance in intestinal bacterial composition and
infection susceptibility to relate features of microbiota structure to C.
difficile inhibition. Infection susceptibility correlated with decreased

microbiota alpha diversity (that is, diversity within individuals) (Fig. 2a),
consistent with previous studies6. Using weighted UniFrac7 distances to
evaluate beta diversity (that is, diversity between individuals), we found
that although clindamycin and ampicillin administration induced dis-
tinct changes in microbiota structure, recovery of resistance corresponded
with return to a common coordinate space shared by antibiotic-naive
animals (Fig. 2b). However, these diversity metrics generally did not
resolve the susceptibility status of animals harbouring microbiota with
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Figure 1 | Different antibiotics induce distinct changes to C. difficile
infection resistance and intestinal microbiota composition. Susceptibility to
C. difficile infection after administration of clindamycin (a), ampicillin (c),
or enrofloxacin (e). b, d, f, Intestinal microbiota composition at time points
indicated. Each stacked bar represents the mean microbiota composition
of three separately housed animals. Centre values (mean), error bars
(s.e.m.) (a, c, e).
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growth in vitro11,12, but the source and contribution of such metabolites
to infection resistance in vivo remain unclear. Noting that C. scindens
expresses enzymes crucial for secondary bile acid synthesis13 that are
uncommon among intestinal bacteria14, we hypothesized that the C.
difficile-protective effects of C. scindens may derive from this rare bio-
synthetic capacity. Analyses of antibiotic-exposed animals (Figs 1 and 2)
revealed that recovery of secondary bile acids and the abundance of the
gene family responsible for secondary bile acid biosynthesis (as pre-
dicted using PICRUSt15) correlated with C. difficile resistance (Fig. 4a, b).
Targeted microbiome analysis of the gene family responsible for sec-
ondary bile acid biosynthesis indicated that abundance of the bile acid
inducible (bai) operon genes correlated strongly with resistance to C.
difficile infection (Fig. 4c) but that bile salt hydrolase (BSH)-encoding
gene abundance did not. These results are consistent with reports indi-
cating that BSH-encoding genes are distributed broadly while an extre-
mely small fraction of intestinal bacteria possess a complete secondary
bile acid synthesis pathway14. PCR-based assay of baiCD, which encodes

the 7a-hydroxysteroid dehydrogenase enzyme critical for secondary
bile acid biosynthesis, revealed that animals that had recovered C. dif-
ficile resistance after antibiotic exposure harboured a baiCD1 micro-
biome, whereas susceptible animals did not (Extended Data Fig. 6a).

Recipients of either the consortium or C. scindens harboured baiCD1

microbiomes with restored abundance of secondary bile acid biosyn-
thesis genes (predicted by PICRUSt) (Extended Data Fig. 6b). Admini-
stration of either bacterial suspension also restored relative abundance
of the secondary bile acids deoxycholate (DCA) (Fig. 4d) and litho-
cholate (LCA) (Extended Data Fig. 7a), both of which inhibit C. difficile
in a dose-dependent fashion (Extended Data Fig. 8a, b), but abundances
of primary bile acids were not significantly altered (Extended Data Fig. 7).
Metagenomic inference indicated that consortia recipients harboured
microbiomes with greater abundances of secondary bile acid biosyn-
thesis genes than C. scindens recipients (Extended Data Fig. 6b), perhaps
explaining their superior resistance to C. difficile. However, intestinal
abundances of DCA and LCA were each comparable in the consortia
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• Treating mice with bacteria that interact negatively 
with C. difficile increases their survival rate

Clostridium scindens produces 
secondary bile acids that inhibit C. 
difficile
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Microbial network analysis tools

only exceptions being posterior fornix, mid-vagina, and antecu-
bital fossae, which tended toward too few phylotypes to reach
significance; see Figure 3D and Table S2), again confirming the
microbiome’s habitat-driven modularity. When calculating net-
work properties in a body-area-specific manner, we found that the
overall average path length between nodes in the oral cavity,
which contributes most of the samples, was much larger (,3.4)
than those of the other body areas (ranging from ,1.1 to ,2.0). In
addition to supporting the aforementioned degree of inter-site
habitat formation in the oral cavity, this intriguingly suggests that
other body sites in which fewer samples are currently available (see
Table 1) have not yet exhausted the detection of microbial
relationships in the human microbiome. More samples and greater
sequencing depth may further improve detection power.

Key taxa including members of the Firmicutes act as
network hubs coordinating many relationships
throughout the microbiome

We next examined the associations of individual clades with
respect to interaction degree, observing highly connected ‘‘hub’’

clades to be found within each body area. Two classes of hubs
appeared in the association network: clades highly connected
within one body site, and clades acting as ‘‘connectors’’ between
multiple body sites. Hubs included both specific taxa (e.g.
Porphyromonas, see Figure 3A, Table S3) and larger taxonomic
groupings (e.g. the phylum Firmicutes). Within-site hubs were
often, although not always, abundant signature taxa (detailed
below), high-degree exceptions including Atopobium on the tongue
(28 total associations, 16 within-site) and Selenomonas on both tooth
plaques (20 total/19 within and 7 total/3 within for supra- and
subgingival, respectively). The latter provides a striking example of
the niche-specificity of these low-abundance within-site interac-
tors, as Selenomonas averages only 1.1% and 1.2% of the sub- and
supragingival plaque communities, respectively, but associates
preferentially (20 of 27, 74%) with members of the greater oxygen
availability supragingival community. The clade’s detection as a
within-site hub thus corresponds with the ecology that might be
expected of an organism known to be oxygen-sensitive, fastidious,
and grown best in co-culture [42].

Between-site hubs typically operated among body sites within
the same area as described above, with two of the five most

Figure 2. Significant co-occurrence and co-exclusion relationships among the abundances of clades in the human microbiome. A
global microbial interaction network capturing 1,949 associations among 452 clades at or above the order level in the human microbiome, reduced
for visualization from the complete network in Figure S1. Each node represents a bacterial order, summarizing one or more genus-level phylotypes
and family-level taxonomic groups. These are colored by body site, and each edge represents a significant co-occurrence/co-exclusion relationship.
Edge width is proportional to the significance of supporting evidence, and color indicates the sign of the association (red negative, green positive).
Self-loops indicate associations among phylotypes within an order; for a full network of all phylotypes and clades, see Figure S1. A high degree of
modularity is apparent within body areas (skin, urogenital tract, oral cavity, gut, and airways) and within individual body sites, with most communities
forming distinct niches across which few microbial associations occur.
doi:10.1371/journal.pcbi.1002606.g002
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Manta: Microbial network clustering

• Challenges: 
– Most existing cluster algorithms (e.g. MCL) do not exploit 

information given in negative edges
– Microbial networks have a low accuracy

• Manta addresses these challenges

Sam Röttjers
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Manta – key ideas

• Use the principle: “an enemy of 
an enemy is a friend” to group 
taxa that share “enemy nodes” 
(nodes linked with negative 
edges) 

• Weak node assignments (nodes 
that cannot be clustered)

• Repeat clustering on partly 
rewired networks to assess 
robustness of clusters and 
cluster memberships

multiplying the weights of the edges connecting the two nodes (Fig. 1A). If the nodes
are connected only by positively weighted edges, the indirect effect is also positive. In
contrast, if the path between the two nodes contains a single negatively weighted
edge, the indirect effect is negative; hence, clusters found by manta reflect the principle
“the enemy of my enemy is my friend.” Depending on the structure of the network
(Fig. 1A and B), manta uses two alternative strategies to generate scoring matrices
(Fig. 1C and D). See Materials and Methods for a detailed explanation and the
pseudocode describing the algorithm.

After the scoring matrix is generated, it can be clustered with an agglomerative
clustering approach (Fig. 1E). The optimal cluster number is identified with the sparsity
score (equation 1 in Materials and Methods), which is calculated from intracluster to
intercluster weighted edges. The network can then be rewired and the procedure
repeated to generate robustness scores (Fig. 1F). This approach generates biologically
relevant clusters while ignoring nodes that cannot be confidently assigned to a cluster.

manta equals or outperforms other algorithms on synthetic data sets. To
evaluate the performance of manta in comparison to alternative methods, we gener-
ated synthetic data sets using two different approaches. One is based on the gener-

FIG 1 manta pipeline. (A) Toy graph with two clusters separated by negatively weighted edges. The
effect of node x on node z can be estimated by taking the product of edges 1,2 and 2,5. (B) Toy graph
with a single negatively weighted edge in the left cluster. (C) Scoring matrix for panel A across six
iterations. Black and white values reflect !1 and 1, respectively. After six iterations, the scoring matrix
reaches convergence. (D) Scoring matrix for panel B across nine iterations. Unlike panel C, this matrix
reaches a flip-flop state, where the scoring matrix alternates between the configurations shown in
iterations 6, 7, 8, and 9. A few values in the matrix reach !1 or 1, while all other values oscillate near 0.
(E) manta uses agglomerative clustering on the scoring matrix to assign each node to a cluster. For
flip-flopping matrices, the scoring matrix is generated from subsets of the complete network. (F) A
fraction of the original network is rewired to generate permuted cluster assignments with identical
degree distributions. The robustness of cluster assignments can then be estimated by comparing the
Jaccard similarities of cluster memberships cluster-wise or node-wise.
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Does manta work? How to evaluate 
a network cluster algorithm?

• Need a data set with known clusters to check 
whether the tool finds them back

• Microbiome data with known clusters are hard to 
find

• Generate synthetic microbial abundances with 
known clusters for manta:
– 1. Population model simulating different 

environmental effects on predefined groups of taxa
– 2. Bicluster generation with FABIA

• Choice of data generation process often biases 
tool evaluation (two processes better than one)

Hochreiter et al. (2010) “FABIA: factor analysis for bicluster acquisition.” 
Bioinformatics 26, 1520-1527.
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method; while this method did not return cluster assignments on the gLV simulated
data, it does return cluster assignments on the FABIA simulation. Surprisingly, the
opposite result holds for MCL, as the algorithm can no longer return cluster assign-
ments on the positive-edge-only networks. MCL does better on the FABIA networks

FIG 2 Performance of network clustering tools on two environmentally motivated clusters. Clustering
performance was estimated on 50 independently generated data sets generated from random interac-
tion matrices. Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were
calculated as described previously (24). The sparsity of the assignment is a function of the edge weights
of intracluster versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate
how many cluster assignments met the following criteria for a particular algorithm: no cluster should
exceed 80% of the total number of nodes, and there should be fewer than 50 clusters. The manta
algorithm was run with and without weak assignments, while WGCNA was run with signed networks and
a signed topological overlap matrix and with unsigned networks combined with the unsigned matrix. For
all other algorithms, we provided the complete network in addition to the positive-edge-only network
(indicated by !).

FIG 3 Performance of network clustering tools on two biclusters generated with FABIA (23). Clustering
performance was estimated on 50 independently generated data sets without an underlying topology.
Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were calculated as
described previously (24). The sparsity of the assignment is a function of the edge weights of intracluster
versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate how many
cluster assignments met the following criteria for a particular algorithm: no cluster should exceed 80% of the
total number of nodes, and there should be fewer than 50 clusters. The manta algorithm was run with and
without weak assignments, while WGCNA was run with signed networks and a signed topological overlap
matrix and with unsigned networks combined with the unsigned matrix. For all other algorithms, we provided
the complete network in addition to the positive-edge-only network (indicated by !).
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method; while this method did not return cluster assignments on the gLV simulated
data, it does return cluster assignments on the FABIA simulation. Surprisingly, the
opposite result holds for MCL, as the algorithm can no longer return cluster assign-
ments on the positive-edge-only networks. MCL does better on the FABIA networks

FIG 2 Performance of network clustering tools on two environmentally motivated clusters. Clustering
performance was estimated on 50 independently generated data sets generated from random interac-
tion matrices. Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were
calculated as described previously (24). The sparsity of the assignment is a function of the edge weights
of intracluster versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate
how many cluster assignments met the following criteria for a particular algorithm: no cluster should
exceed 80% of the total number of nodes, and there should be fewer than 50 clusters. The manta
algorithm was run with and without weak assignments, while WGCNA was run with signed networks and
a signed topological overlap matrix and with unsigned networks combined with the unsigned matrix. For
all other algorithms, we provided the complete network in addition to the positive-edge-only network
(indicated by !).

FIG 3 Performance of network clustering tools on two biclusters generated with FABIA (23). Clustering
performance was estimated on 50 independently generated data sets without an underlying topology.
Sensitivity (Sn), positive predictive values (PPV), accuracy (Acc), and separation (Sep) were calculated as
described previously (24). The sparsity of the assignment is a function of the edge weights of intracluster
versus intercluster edges (equation 1). The numbers next to the sensitivity results indicate how many
cluster assignments met the following criteria for a particular algorithm: no cluster should exceed 80% of the
total number of nodes, and there should be fewer than 50 clusters. The manta algorithm was run with and
without weak assignments, while WGCNA was run with signed networks and a signed topological overlap
matrix and with unsigned networks combined with the unsigned matrix. For all other algorithms, we provided
the complete network in addition to the positive-edge-only network (indicated by !).
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Microbial network clustering: lessons

• If your network contains negative edges, use tools that 
support them (signed WGCNA, Kernighan Lin, manta)

• If you think that there are only 2 clusters, run Kernighan Lin
• WGCNA makes an assumption about the network structure 

(i.e. that it is scale-free), which may not be true 
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Tundra soil network
Layout: organic
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clustering & layout with manta

These taxa prefer a high pH
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Manta in action: Lake Taihu
Eutrophication: two regimes driven by nutrient concentration 

Macrophyte-dominated regime (MDR)

Phytoplankton-dominated regime (PDR)

Regime transition Shapes the Composition, Assembly Processes, and Co-occurrence Pattern…

1 3

most taxa (Table S1). Typically, as the regime shifted from 
MDR to PDR, the relative abundance of Betaproteobacteria 
decreased non-linearly and gradually, whereas abundance of 
Actinobacteria increased non-linearly and reached its peak at 
the MDR-Edge site. Firmicutes and Gammaproteobacteria 
became abundant at the PDR-Edge site, and respectively 
dominated the PDR-Core sites with a linear and non-linear 
tendency, respectively.

Both taxonomic and phylogenetic dissimilarity of bacte-
rioplankton community were significantly correlated with 
environmental distance along the regime shift (Fig. S8, 
P < 0.05). Concentrations of TP along the MDR and PDR 
showed significant negative correlations with the alpha 
diversity of the bacterioplankton community (Fig.  1a), 
indicating that the alpha diversity decreased with increas-
ing nutrient concentration under the regime shift. Significant 
positive correlations between the TP dissimilarity and beta 
diversity of bacterioplankton community were also observed 
(Fig. S9), indicating that the differences of TP concentra-
tion between the samples contribute to the heterogeneity of 
bacterioplankton communities along the regime shift from 
MDR to PDR. Based on the Mantel test and partial Man-
tel test results (Table S3), the bacterioplankton community 
was significantly correlated with most of the environmental 

parameters along the regime shift (P < 0.05), especially for 
TP (R = 0.7645 and 0.5377 for Mantel test and partial Man-
tel test, respectively). The PCoA plot further highlighted that 
the community composition aligned well to environmental 
parameters (Fig. 3).

Almost all of the betaNTI values were considerably less 
than −2 (Fig. S10a). This suggests that deterministic pro-
cesses dominate in shaping the bacterioplankton communi-
ties along the two regimes [48]. Moreover, as the regime 
shifted from MDR to PDR, the contribution of determin-
istic processes first decreased in the edge sites and then 
increased again closer to the PDR. Furthermore, the assem-
bly analysis revealed the quantitative importance of variable 
selection (selection under heterogeneous abiotic and biotic 
environmental conditions leading to more dissimilar struc-
tures among communities; also called variable selection), 
homogeneous selection (selection under homogeneous abi-
otic and biotic environmental conditions leading to more 
similar structures among communities), dispersal limitation, 
homogeneous dispersal, and other processes in shaping the 
community patterns of the bacterioplankton community 
along the two regimes (Fig. S10b). At a relative importance 
of more than 60%, variable selection contributed the most 
to the assembly processes of bacterioplankton communities 

Fig. 3  Bray–Curtis dissimi-
larity based PCoA plot from 
six sampling sites across 
regime shift from macrophyte-
dominated regime (MDR) 
to phytoplankton-dominated 
regime (PDR) in Taihu Lake. 
TN, total nitrogen; DTN, dis-
solved total nitrogen;  NH4

+-N, 
ammonium nitrogen;  NO3

−-N, 
nitrate nitrogen;  NO2

−-N, nitrite 
nitrogen; TP, total phosphorus; 
DTP, dissolved total phospho-
rus;  PO4

3−-P, phosphate; DOC, 
dissolved organic carbon; DO, 
dissolved oxygen; Chl a, chlo-
rophyll a

TP: total 
phosphorus
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in these six sites. At 28.58%, homogenizing dispersal was 
the second-most important assembly process of the bacte-
rioplankton community.

Co-occurrence Patterns of the Bacterioplankton 
Community Along the Regime Shift

Before constructing the global network from all of the 54 
samples, we constructed six co-occurrence networks from 
the six sampling sites along the regime transition. These 
sampling sites, located along the regime transition from 
MDR to PDR, were labelled MDR-Core1, MDR-Core2, 
MDR-Edge, PDR-Edge, PDR-Core2 and PDR-Core1. The 
derived co-occurrence networks featured environment-
specific species co-occurrence relationships (Fig. 4 and 
Fig. S11). Subnetworks inferred from datasets trimmed into 
uniform number of OTUs contained distinct co-occurrence 
patterns in terms of species composition (Fig. 4). Moreover, 
these regime-specific co-occurrence relationships displayed 
network characteristics that were significantly different 
compared to random networks (Table 1). The Z-test results 
comparing a variety of indexes of the observed correlation-
based network with those of random networks, including 
Modularity, Transitivity and Network diameter, indicated 
that the networks among species along the regime shift from 

PDR and MDR were all nonrandom (P < 0.001 in all cases, 
Table 1). Based on the size and taxonomic information, the 
bacterioplankton community network changed along the 
regime transition from MDR to PDR (Table 1 and Fig. S11). 
Bacteroidetes, Betaproteobacteria and Actinobacteria domi-
nated and clustered in the MDR sites, whereas Firmicutes 
and Gammaproteobacteria dominated and clustered in the 
PDR sites.

To explore the effects of environmental factors on taxon-
taxon association networks, all taxa and environmental fac-
tors were added to obtain the global network (Fig. 4). The 
bacterioplankton community of the six sampling sites along 
regime transition from MDR to PDR was grouped into three 
clusters, with cluster 1 and cluster 3 surrounded by specific 
nodes of cluster 2, respectively (Fig. 4). Compared with 
the environmental variables in the MDR-associated cluster 
(cluster 1), those in the PDR-associated cluster (cluster 3) 
had greater positive effects on OTUs, especially for TP. We 
also observed that environmental factors such as turbidity, 
pH, DTP, DOC,  PO4

3−-P and  NO2
−-N were hubs in these 

networks, indicating that the changes in the concentrations 
of nutrients are driving the bacterioplankton community 
interactions along the regime shift from MDR to PDR. Of 
note, taxa assigned to cluster 2 are grouped with both cluster 
1 and cluster 3 in the visualization. Few connections were 

Fig. 4  CoNet-based network of all samples along the regime shift 
from the macrophyte-dominated regime (MDR) and phytoplankton-
dominated regime (PDR) in Taihu Lake clustered with manta. The 
red solid lines indicate positive correlations and the black lines indi-

cate negative correlations. Different phyla and environmental factors 
are represented with different colors (a). Cluster identity is further 
represented by different node shapes and colors (b)

Manta in action: Lake Taihu
• Network constructed with CoNet 

on all 54 samples and clustered 
with manta

• Cluster 1 mostly consists of 
Betaproteobacteria, which 
decline with nutrient levels

• Cluster 3 is dominated by 
Firmicutes, which tend to 
increase with nutrient levels

• Cluster 2: contains phyla with 
non-linear responses: 
Gammaproteobacteria
(saturation) and Actinobacteria
(optimum)

 X. Cao et al.
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in these six sites. At 28.58%, homogenizing dispersal was 
the second-most important assembly process of the bacte-
rioplankton community.

Co-occurrence Patterns of the Bacterioplankton 
Community Along the Regime Shift

Before constructing the global network from all of the 54 
samples, we constructed six co-occurrence networks from 
the six sampling sites along the regime transition. These 
sampling sites, located along the regime transition from 
MDR to PDR, were labelled MDR-Core1, MDR-Core2, 
MDR-Edge, PDR-Edge, PDR-Core2 and PDR-Core1. The 
derived co-occurrence networks featured environment-
specific species co-occurrence relationships (Fig. 4 and 
Fig. S11). Subnetworks inferred from datasets trimmed into 
uniform number of OTUs contained distinct co-occurrence 
patterns in terms of species composition (Fig. 4). Moreover, 
these regime-specific co-occurrence relationships displayed 
network characteristics that were significantly different 
compared to random networks (Table 1). The Z-test results 
comparing a variety of indexes of the observed correlation-
based network with those of random networks, including 
Modularity, Transitivity and Network diameter, indicated 
that the networks among species along the regime shift from 

PDR and MDR were all nonrandom (P < 0.001 in all cases, 
Table 1). Based on the size and taxonomic information, the 
bacterioplankton community network changed along the 
regime transition from MDR to PDR (Table 1 and Fig. S11). 
Bacteroidetes, Betaproteobacteria and Actinobacteria domi-
nated and clustered in the MDR sites, whereas Firmicutes 
and Gammaproteobacteria dominated and clustered in the 
PDR sites.

To explore the effects of environmental factors on taxon-
taxon association networks, all taxa and environmental fac-
tors were added to obtain the global network (Fig. 4). The 
bacterioplankton community of the six sampling sites along 
regime transition from MDR to PDR was grouped into three 
clusters, with cluster 1 and cluster 3 surrounded by specific 
nodes of cluster 2, respectively (Fig. 4). Compared with 
the environmental variables in the MDR-associated cluster 
(cluster 1), those in the PDR-associated cluster (cluster 3) 
had greater positive effects on OTUs, especially for TP. We 
also observed that environmental factors such as turbidity, 
pH, DTP, DOC,  PO4

3−-P and  NO2
−-N were hubs in these 

networks, indicating that the changes in the concentrations 
of nutrients are driving the bacterioplankton community 
interactions along the regime shift from MDR to PDR. Of 
note, taxa assigned to cluster 2 are grouped with both cluster 
1 and cluster 3 in the visualization. Few connections were 

Fig. 4  CoNet-based network of all samples along the regime shift 
from the macrophyte-dominated regime (MDR) and phytoplankton-
dominated regime (PDR) in Taihu Lake clustered with manta. The 
red solid lines indicate positive correlations and the black lines indi-

cate negative correlations. Different phyla and environmental factors 
are represented with different colors (a). Cluster identity is further 
represented by different node shapes and colors (b)Cao, Zhao, Li, Röttjers, Faust and Zhang (2022) Microbial Ecology Accepted.

TP: total 
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• We can construct a set of networks e.g., 
one gut microbial network per person

• Is a network core present or do networks 
overlap not more than expected by 
chance?

Microbial network comparison

Since edges present in at least k networks but not in m networks represent
less conserved edges, the difference of the intersections is calculated to
distinguish between less conserved and more conserved edges. The
difference of two intersections k andm, with SI and SJ defined identically to
SI in the equation above is then given below

Difference of intersections ¼
[

I2Pnk

SIn
[

J2Pnm

SJ where k<m

To compare observed set sizes to set sizes of random networks, the Z-score
test is carried out, which identifies set sizes in the input networks that are
outside the range of set sizes inferred from groups of random networks.
The SciPy normaltest implementation [22] of D’Agostino’s and Pearson’s
omnibus normality test is used to test for both kurtosis and skewness
[23, 24]. Since this test requires at least 20 observations, a warning is issued
if the number of random networks needs to be increased.
The toolbox can also assess centrality scores across networks. To ensure

that centralities are not biased by edge number, these are first converted to
ranks before a Mann–Whitney U test is used to assess whether the
distributions of ranks are similar across groups of observed networks and
random networks. The comparisons to random networks are repeated a
number of times and parameter-free p values across all comparisons are
calculated from the number of successful Mann–Whitney U tests. By default,
Benjamini-Hochberg multiple-testing corrections (implemented in the

statsmodel package) are carried out on these p values to correct for the
number of taxa [25]. The approach for network-level properties is similar, with
the software currently supporting assortativity, connectivity, diameter, radius,
and the average shortest path length. If the networks are ordered, the toolbox
can calculate Spearman correlations of these properties to the network order.
For example, users could supply networks constructed across a pH gradient.
The results of all analyses are exported to tab-delimited files so they can be
further analyzed and visualized in the user’s preferred statistical environment.
Finally, the toolbox includes an option for resampling networks. In this

way, the resulting data show how trends in set sizes change as the number
of networks is increased. The resulting data can be interpreted as a
rarefaction curve, where flattening of the curve suggests that sufficient
networks have been collected to identify all edges present in a specific
fraction of networks.

Case studies
Gut microbial time series data were collected from 20 women each of
whom donated stool samples for over a month, with a sampling frequency
close to one sample per day (Vandeputte et al., submitted) [26]. These
women also reported data on their menstrual cycle. For each sample,
enterotype assignments were carried out as in Vandeputte et al. [27] with
Dirichlet multinomial clustering. Samples were assigned to Bacteroides 1,
Bacteroides 2, Ruminococcaceae, or Prevotella.

A Import multiple networks B Construct null models

Edges shared by:

          3 networks

          2 networks,
          but not 
          3 networks

C Return sizes of sets D Compare properties

Fig. 1 The anuran pipeline. In the networks, node colors represent microbial taxa, while the red and green edge colors represent negative
and positive edge weights respectively. AMultiple networks are imported by the user. These networks can be ordered, and multiple groups of
networks can be imported at the same time. B Random networks are constructed for each of the imported networks. These can be fully
randomized by removing all edges and reassigning them randomly. Alternatively, they can preserve the degree distribution of the original
network by swapping edges (highlighted in yellow). They may also contain a synthetic core. C A Venn diagram showing the types of sets
returned by the toolbox for a collection of four networks. These sets measure the overlap between specific numbers of networks; each color in
the Venn diagram indicates a set returned by the toolbox. Rather than returning the matching edges between two specific networks, the
toolbox returns any matching edges that are present in at least three networks (intersection) or only present in two networks (difference of
two intersections), as indicated by the different colors in the Venn diagram. D Node properties (such as the degree of the green taxon with
dashed border) can be compared to degree distribution of this node in randomized networks to assess whether this taxon has a nonrandom
degree centrality across networks. Similarly, network properties can be compared to those calculated for random networks.
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Since edges present in at least k networks but not in m networks represent
less conserved edges, the difference of the intersections is calculated to
distinguish between less conserved and more conserved edges. The
difference of two intersections k andm, with SI and SJ defined identically to
SI in the equation above is then given below

Difference of intersections ¼
[

I2Pnk

SIn
[

J2Pnm

SJ where k<m

To compare observed set sizes to set sizes of random networks, the Z-score
test is carried out, which identifies set sizes in the input networks that are
outside the range of set sizes inferred from groups of random networks.
The SciPy normaltest implementation [22] of D’Agostino’s and Pearson’s
omnibus normality test is used to test for both kurtosis and skewness
[23, 24]. Since this test requires at least 20 observations, a warning is issued
if the number of random networks needs to be increased.
The toolbox can also assess centrality scores across networks. To ensure

that centralities are not biased by edge number, these are first converted to
ranks before a Mann–Whitney U test is used to assess whether the
distributions of ranks are similar across groups of observed networks and
random networks. The comparisons to random networks are repeated a
number of times and parameter-free p values across all comparisons are
calculated from the number of successful Mann–Whitney U tests. By default,
Benjamini-Hochberg multiple-testing corrections (implemented in the

statsmodel package) are carried out on these p values to correct for the
number of taxa [25]. The approach for network-level properties is similar, with
the software currently supporting assortativity, connectivity, diameter, radius,
and the average shortest path length. If the networks are ordered, the toolbox
can calculate Spearman correlations of these properties to the network order.
For example, users could supply networks constructed across a pH gradient.
The results of all analyses are exported to tab-delimited files so they can be
further analyzed and visualized in the user’s preferred statistical environment.
Finally, the toolbox includes an option for resampling networks. In this

way, the resulting data show how trends in set sizes change as the number
of networks is increased. The resulting data can be interpreted as a
rarefaction curve, where flattening of the curve suggests that sufficient
networks have been collected to identify all edges present in a specific
fraction of networks.

Case studies
Gut microbial time series data were collected from 20 women each of
whom donated stool samples for over a month, with a sampling frequency
close to one sample per day (Vandeputte et al., submitted) [26]. These
women also reported data on their menstrual cycle. For each sample,
enterotype assignments were carried out as in Vandeputte et al. [27] with
Dirichlet multinomial clustering. Samples were assigned to Bacteroides 1,
Bacteroides 2, Ruminococcaceae, or Prevotella.

A Import multiple networks B Construct null models

Edges shared by:

          3 networks

          2 networks,
          but not 
          3 networks

C Return sizes of sets D Compare properties

Fig. 1 The anuran pipeline. In the networks, node colors represent microbial taxa, while the red and green edge colors represent negative
and positive edge weights respectively. AMultiple networks are imported by the user. These networks can be ordered, and multiple groups of
networks can be imported at the same time. B Random networks are constructed for each of the imported networks. These can be fully
randomized by removing all edges and reassigning them randomly. Alternatively, they can preserve the degree distribution of the original
network by swapping edges (highlighted in yellow). They may also contain a synthetic core. C A Venn diagram showing the types of sets
returned by the toolbox for a collection of four networks. These sets measure the overlap between specific numbers of networks; each color in
the Venn diagram indicates a set returned by the toolbox. Rather than returning the matching edges between two specific networks, the
toolbox returns any matching edges that are present in at least three networks (intersection) or only present in two networks (difference of
two intersections), as indicated by the different colors in the Venn diagram. D Node properties (such as the degree of the green taxon with
dashed border) can be compared to degree distribution of this node in randomized networks to assess whether this taxon has a nonrandom
degree centrality across networks. Similarly, network properties can be compared to those calculated for random networks.
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• Implements 2 types of null 
models: network 
randomization with and 
without preserving node 
degree distribution

• Tests whether a network 
property or a core 
network is significant 
given randomized 
networks

Anuran: a toolbox for comparing 
noisy microbial networks

Röttjers S, Vandeputte D, Raes J and Faust K (2021). “Null-model-based network comparison 
reveals core associations” ISME Communications 1, 36
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Sponge microbiome 3

Figure 1: Global sample collection sites. Bubbles indicate collection sites of (A) marine sponges, (B) seawater, and (C) marine sediment samples. Bubble sizes are
proportional to number of samples as indicated.

150 individuals. Seawater (n = 370), sediment (n = 65), algae (n
= 1), and echinoderm (n = 1) samples as well as bio!lm swabs
(n = 21) of rock surfaces were collected in close proximity to the
sponges for comparative community analysis. Six negative con-
trol samples (sterile water) were processed to identify any po-
tential contaminations. Of the samples included in this current
dataset, 973 samples had been analysed previously [13]. Samples
were collected from a wide range of geographical locations (Fig.
1; Supplementary Table S1). Total DNA was extracted as previ-
ously described [13] and used as templates to amplify and se-
quence the V4 region of the 16S rRNA gene using the standard
procedures of the Earth Microbiome Project (EMP) [14, 15].

Processing of sequencing data

Clustering using the EMP standard protocols in QIIME
Raw sequences were demultiplexed and quality controlled fol-
lowing the recommendations of Bokulich et al. [16]. Quality-
!ltered, demultiplexed fastq !les were processed using the
default closed-reference pipeline from QIIME v. 1.9.1 (QIIME,
RRID:SCR 008249). Brie"y, sequences were matched against
the GreenGenes reference database (v. 13 8 clustered at 97%
similarity). Sequences that failed to align (e.g., chimeras)
were discarded, which resulted in a !nal number of 300 140
110 sequences. Taxonomy assignments and the phylogenetic
tree information were taken from the centroids of the refer-
ence sequence clusters contained in the GreenGenes reference
database (Greengenes, RRID:SCR 002830). This closed-reference
analysis allows for cross-dataset comparisons and direct com-
parison with the tens of thousands of other samples processed
in the EMP and available via the Qiita database [17].

Clustering using Mothur
Quality-!ltered, demultiplexed fastq !les were also processed
using Mothur v. 1.37.6 (Mothur, RRID:SCR 011947) [18] and
Python v. 2.7 (Python Programming Language, RRID:SCR 008394)
[19] custom scripts with modi!cations from previously estab-
lished protocols [13]. Detailed descriptions and command out-
puts are available at the project notebook (see Availability of
supporting data). Brie"y, sequences were quality-trimmed to a
maximum length of 100 bp. To minimize computational effort,
the dataset was reduced to unique sequences, retaining total
sequence counts. Sequences were aligned to the V4 region of
the 16S rRNA gene sequences from the SILVA v. 123 database

(SILVA, RRID:SCR 006423) [20]. Sequences that aligned at the ex-
pected positions were kept, and this dataset was again reduced
to unique sequences. Further, singletonswere removed from the
dataset, and the remaining sequences were preclustered if they
differed by 1 nucleotide position. Sequences classi!ed as eu-
karyote, chloroplast,mitochondria, or unknown according to the
Greengenes (v. 13 8 clustered at 99% similarity) [21] and SILVA
taxonomies [22] were removed. Chimeras were identi!ed with
UCHIME (UCHIME, RRID:SCR 008057) [23] and removed. Finally,
sequences were de novo clustered into operational taxonomic
units (OTUs) using the furthest neighbour method at 97% simi-
larity. Representative sequences of OTUs were retrieved based
on the mean distance among the clustered sequences. Con-
sensus taxonomies based on the SILVA, Greengenes, and RDP
(v. 14 03 2015; Ribosomal Database Project, RRID:SCR 006633)
[24] databases were obtained based on the classi!cation of se-
quences clustered within each OTU. The inclusion of these tax-
onomies is helpful considering that they have substantial differ-
ences, as recently discussed [25]. For example, Greengenes and
RDP have the taxon Poribacteria, a prominent sponge-enriched
phylum [26], which did not exist in the SILVA version used.

De-noising using Deblur
Recently, sub-OTU methods that allow views of the data at
single-nucleotide resolution have become available. One such
method is Deblur [27], which is a de-noising algorithm for iden-
ti!cation of the actual bacterial sequences present in a sample.
Using an upper bound on the polymerase chain reaction and
read-error rates, Deblur processes each sample independently
and outputs the list of sequences and their frequencies in each
sample, enabling single nucleotide resolution. For creating the
deblurred biom table, quality-!ltered, demultiplexed fasta !les
were used as input to Deblur using a trim length of 100 andmin-
reads of 25 (removing sOTUs with <25 reads total in all samples
combined). Taxonomy was added to the resulting biom table us-
ing QIIME [28], RDP classi!er [29], and Greengenes v. 13.8 [21].

Database metadata category enrichment
For enrichment analysis ofmetadata terms in a set of sequences,
each unique metadata value is tested using both a binomial test
and a ranksum test. All analysis is performed on a randomly
subsampled (5000 reads/sample) table.

Sponge microbiome 3

Figure 1: Global sample collection sites. Bubbles indicate collection sites of (A) marine sponges, (B) seawater, and (C) marine sediment samples. Bubble sizes are
proportional to number of samples as indicated.

150 individuals. Seawater (n = 370), sediment (n = 65), algae (n
= 1), and echinoderm (n = 1) samples as well as bio!lm swabs
(n = 21) of rock surfaces were collected in close proximity to the
sponges for comparative community analysis. Six negative con-
trol samples (sterile water) were processed to identify any po-
tential contaminations. Of the samples included in this current
dataset, 973 samples had been analysed previously [13]. Samples
were collected from a wide range of geographical locations (Fig.
1; Supplementary Table S1). Total DNA was extracted as previ-
ously described [13] and used as templates to amplify and se-
quence the V4 region of the 16S rRNA gene using the standard
procedures of the Earth Microbiome Project (EMP) [14, 15].

Processing of sequencing data

Clustering using the EMP standard protocols in QIIME
Raw sequences were demultiplexed and quality controlled fol-
lowing the recommendations of Bokulich et al. [16]. Quality-
!ltered, demultiplexed fastq !les were processed using the
default closed-reference pipeline from QIIME v. 1.9.1 (QIIME,
RRID:SCR 008249). Brie"y, sequences were matched against
the GreenGenes reference database (v. 13 8 clustered at 97%
similarity). Sequences that failed to align (e.g., chimeras)
were discarded, which resulted in a !nal number of 300 140
110 sequences. Taxonomy assignments and the phylogenetic
tree information were taken from the centroids of the refer-
ence sequence clusters contained in the GreenGenes reference
database (Greengenes, RRID:SCR 002830). This closed-reference
analysis allows for cross-dataset comparisons and direct com-
parison with the tens of thousands of other samples processed
in the EMP and available via the Qiita database [17].

Clustering using Mothur
Quality-!ltered, demultiplexed fastq !les were also processed
using Mothur v. 1.37.6 (Mothur, RRID:SCR 011947) [18] and
Python v. 2.7 (Python Programming Language, RRID:SCR 008394)
[19] custom scripts with modi!cations from previously estab-
lished protocols [13]. Detailed descriptions and command out-
puts are available at the project notebook (see Availability of
supporting data). Brie"y, sequences were quality-trimmed to a
maximum length of 100 bp. To minimize computational effort,
the dataset was reduced to unique sequences, retaining total
sequence counts. Sequences were aligned to the V4 region of
the 16S rRNA gene sequences from the SILVA v. 123 database

(SILVA, RRID:SCR 006423) [20]. Sequences that aligned at the ex-
pected positions were kept, and this dataset was again reduced
to unique sequences. Further, singletonswere removed from the
dataset, and the remaining sequences were preclustered if they
differed by 1 nucleotide position. Sequences classi!ed as eu-
karyote, chloroplast,mitochondria, or unknown according to the
Greengenes (v. 13 8 clustered at 99% similarity) [21] and SILVA
taxonomies [22] were removed. Chimeras were identi!ed with
UCHIME (UCHIME, RRID:SCR 008057) [23] and removed. Finally,
sequences were de novo clustered into operational taxonomic
units (OTUs) using the furthest neighbour method at 97% simi-
larity. Representative sequences of OTUs were retrieved based
on the mean distance among the clustered sequences. Con-
sensus taxonomies based on the SILVA, Greengenes, and RDP
(v. 14 03 2015; Ribosomal Database Project, RRID:SCR 006633)
[24] databases were obtained based on the classi!cation of se-
quences clustered within each OTU. The inclusion of these tax-
onomies is helpful considering that they have substantial differ-
ences, as recently discussed [25]. For example, Greengenes and
RDP have the taxon Poribacteria, a prominent sponge-enriched
phylum [26], which did not exist in the SILVA version used.

De-noising using Deblur
Recently, sub-OTU methods that allow views of the data at
single-nucleotide resolution have become available. One such
method is Deblur [27], which is a de-noising algorithm for iden-
ti!cation of the actual bacterial sequences present in a sample.
Using an upper bound on the polymerase chain reaction and
read-error rates, Deblur processes each sample independently
and outputs the list of sequences and their frequencies in each
sample, enabling single nucleotide resolution. For creating the
deblurred biom table, quality-!ltered, demultiplexed fasta !les
were used as input to Deblur using a trim length of 100 andmin-
reads of 25 (removing sOTUs with <25 reads total in all samples
combined). Taxonomy was added to the resulting biom table us-
ing QIIME [28], RDP classi!er [29], and Greengenes v. 13.8 [21].

Database metadata category enrichment
For enrichment analysis ofmetadata terms in a set of sequences,
each unique metadata value is tested using both a binomial test
and a ranksum test. All analysis is performed on a randomly
subsampled (5000 reads/sample) table.

• Sponge microbiome project: microbiota of 268 different 
sponge host species collected around the globe 

• > 3000 samples from ten sponge orders sequenced

Moitinho-Silva, L., Nielsen, S., Amir, A., Gonzalez, A., Ackermann, G. L., Cerrano, C., ... & Steinert, 
G. (2017). The sponge microbiome project. GigaScience, 6(10), gix077.
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• Ten sponge-order-specific 
networks constructed with 
CoNet

• Number of shared edges is 
significant for edges 
conserved in three 
networks -> core network

= Fraction of networks in which shared edges occur
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However, the positive controls with a core conserved across 50%
of networks had a much larger set size at five networks. Therefore,
the CAN was constructed from all associations present in three out
of ten networks (Fig. 5). Prior work suggests that most of the
variation in a bipartite sponge-bacteria network could be
attributed to differences between bacterial abundance: HMA
versus LMA [31]. Supplementary data from Moitinho-Silva et al.
[32] were used to identify taxa in network clusters that were
significantly more or less abundant in HMA compared to LMA
sponges. Indeed, we found that HMA and LMA assignments were
different across the three clusters (Chi-squared test, p= 0.006),
with cluster 0 containing more HMA-associated phyla and cluster
1 containing only LMA-associated phyla. This suggests that the

CAN contains several phyla that have previously been identified as
indicators of HMA–LMA status.
In addition to a CAN, we found that networks did not contain

taxa with consistently lower or higher centrality scores compared
to randomized networks (Additional File 1: Fig. S5).

DISCUSSION
Researchers can use properties of microbial association networks
to describe trends in microbial communities. Such properties can
include modularity, a CAN, high degree (hub nodes), or any other
property that can be calculated from the network. Frequently,
these are considered to mirror how the studied community is
structured. Hence, robust estimates of these properties can yield
valuable information on community structure.
We chose to use two types of network null models that

represent two extremes in terms of constraints. The randomized
null model is not constrained in terms of network structure (apart
from node and edge number), while the degree-preserving
models may be overly constrained especially if the degree
centrality is a meaningful representation of a biologically relevant
property, such as a taxon’s generalist lifestyle. Moreover, these
models make no assumptions on the nature of associations.
Therefore, it is unknown whether an association in a CAN reflects a
biotic interaction, as these associations can also result from similar
taxon responses to the environment or other organisms. The
effects of biotic interactions can be better studied through other
methods, for instance, joint species distribution models [37, 38].
Additional assumptions could be included to further improve

the ability of null models to identify striking patterns. However,
more complex null models are not well-established when it comes
to the analysis of microbial association networks. Candidates
include the Albert and Barabási [39] and Klemm and Eguíluz
network models [40], which describe mechanisms of network
growth and could therefore identify networks not generated in
accordance with such mechanisms. Yet, a network model that
assumes a particular growth mechanism may not be appropriate
for association networks. Few associations in an association
network are expected to represent interactions [41]. As a result,
mechanisms for network growth may apply to the underlying
interaction networks, but not directly to association networks. If a
null model includes an assumption not known to be true, the null
model becomes a pseudo-null model [42]. This could wrongly lead
researchers to conclude that there is no relevant biological effect
in addition to the effect described in the pseudo-null model. A
comparison to these network models therefore addresses whether
properties are significantly different compared to networks
generated according to specific rules of network growth, but it
cannot address the nonrandomness of network properties. Since
this toolbox has been developed to find nonrandom trends in
association networks, we chose network null models that make no
assumptions on network growth (e.g., preferential attachment)
because (1) we cannot be sure that such assumptions hold for
interaction networks and (2) these null models do not take
additional processes into account (such as environmental
influence) that likely shape association networks.
As one of the null models in anuran preserves the degree

distribution, comparisons to networks generated from those null
models support statements on correlations between degree and
other centralities. While we did not fully explore the effects of
other properties, such as the fraction of realized edges or network
topology, these topics have been discussed previously in
methodological studies on ecological and social networks
[15, 16, 43, 44]. However, we recommend that they deserve
similar attention in the context of microbial association networks.
For example, Agler et al. defined hub taxa as those taxa that had
higher closeness, betweenness, and degree centrality than other
taxa [45], but such measures may be strongly correlated in

Negative control

Positive control - prevalence

Input

Random
Degree

Random - 10%

Degree - 10%

Random - 50%

Degree - 50%

Fig. 4 Set sizes across networks for ten sponge networks and
randomizations of these networks. The set size is the number of
edges present in a particular number of networks. The set size is
shown for a set of sets of network intersections, meaning that the
set of sets 4→6 is calculated as the number of edges in four or five
networks with all edges in at least six networks removed. Each
network was generated for a different host sponge order for which
at least 50 samples were available. These networks were then
randomized either with the same degree distribution (degree) or
without this distribution (random). Moreover, each of the networks
was randomized with preservation of a part of the input network for
a subset of the randomizations as a positive control. Hence, the
positive control degree networks are randomized versions of each
input network with 20% of the union of associations present in at
least 20% of observed networks or at least 50% of observed
networks. Error bars represent the standard error across different
combinations of random networks. For sets of edges present in up
to six networks, the set size of the input networks deviates
significantly from the set size from those of random networks with
or without degree preservation.
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Moitinho-Silva, L., Steinert, G., Nielsen, S., Hardoim, C. C., Wu, Y. C., McCormack, G. P., ... & 
Hentschel, U. (2017). Predicting the HMA-LMA status in marine sponges by machine 
learning. Frontiers in microbiology, 8, 752.

• Core network clustered with 
manta

• Clusters contain indicator taxa 
for high versus low microbial 
abundance sponges (HMA vs 
LMA)

• HMA vs LMA classification 
traverses sponge orders 

• No 100% core expected (there 
are no more highly preserved 
edges than expected at 
random)

dissortative networks, where nodes with high degree are more
likely to connect to nodes with low degree [46]. Our analysis of
centrality rankings further supports the observation that between-
ness and degree centrality are correlated, as we found that taxa
did not have betweenness centrality rankings significantly
different from betweenness centrality rankings observed for the
degree-preserving random networks.
We found that our set-of-sets approach could identify a CAN

from associations present in at least four individual-specific
networks inferred from fecal samples. Out of the two largest
CAN clusters, one contains Blautia, Faecalibacterium, and Copro-
coccus as its most central nodes, while the other contains
Sporobacter, a group of Ruminococcaceae members, and a group
of Clostridiales members. These clusters may be driven by
enterotype structure. However, the number of individuals
included in our analysis prevented us from drawing more specific
conclusions.
On networks constructed from sponge order-specific taxon

abundances, the set-of-sets approach identified a large CAN. This
CAN was significantly different from the CAN observed for random
networks. We suspected based on prior work that this large CAN
could arise from a partition in sponge symbiotic relationships, as
sponges tend to either have high or LMA [47]. Several taxa have
been identified as indicators of this divide and many of those
indicators were also found in the CAN [32]. Although HMA–LMA
status is not strictly phylogenetically conserved across most
sponges [47], associations between taxa that relate to this status
appear to be conserved across at least a subset of sponge orders
(Fig. 5). Hence, the set-of-sets analysis suggests that some of the
dynamics responsible for the HMA–LMA discrepancy are shared
across different orders of sponges.
No CAN was observed across 80–100% of samples. Either the

associations exist and are not detected in several networks (false
negatives) or associations are not highly conserved in these case
studies. Our results support the latter explanation, since we
detected traces of group structure that could have led to the low-
prevalence CANs we observed. For the sponges, group-specific
networks could be linked to HMA–LMA status [32]. For human
individuals, group-specific networks could result from enterotype-
specific variation in stool moisture, as moisture content was

previously found to covary with stool samples that were
enterotyped as Prevotella or Bacteroides [27]. However, due to
the limited number of participants, we were unable to infer
enterotype-specific CANs.
Microbial networks have become a popular method for the

analysis of microbiome data despite their low accuracy. With
anuran, we have introduced a tool that can aid in the comparison
of multiple noisy networks through analysis of random networks.
Our set-of-sets approach uses null models to find conserved
patterns across groups of networks. Therefore, anuran is one of
the first dedicated tools for meta-analysis of noisy networks with
null models. We expect this null model suite to be a valuable
benchmarking tool in the analysis of microbial and other
networks.

DATA AVAILABILITY
All scripts and software, including scripts to generate the figures in this manuscript,
have been deposited to Zenodo [48]. An up-to-date version of the software is being
maintained on a GitHub repository: https://github.com/ramellose/anuran [49]. Data
for study case 1 will only be available upon acceptance of the corresponding
manuscript. Data for study case 2 are available from [31].

MATERIALS AVAILABILITY
All scripts and software are available under the Apache 2.0 license.
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Fig. 5 Core association network (CAN) constructed from associations present in at least three orders of sponges. Networks were
generated with CoNet from samples collected for the Sponge Microbiome Project [31] and were constructed using samples from a single
order of sponges. Associations present in at least three networks were included in the CAN. Node color was mapped to phylum and the
manta clustering algorithm was used to identify clusters in the network.
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Anuran in action: Human gut microbiome

passage rates and vice versa: one-way Bact1-to-Rum shifts are 8%
less likely with every percent increase in stool moisture, while one-
way Rum-to-Bact2 shifts are 74% more likely (relative risk with
each unit increase (risk ratio) for moisture content: 0.92 and 1.74,

respectively, P < 0.05, based on a multi-state Markov model.
Similar results for BSS score). Interestingly, softer stools did not
associate with a movement towards a Prev constellation8,43,46.
Consistent with the increased proteolytic/saccharolytic potential of
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Relative Microbiome Profiling (RMP) Quantitative Microbiome Profiling (QMP)
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Fig. 3 Gains in accuracy in the estimation of the equilibrium abundance are highest for the first five samples for both RMP and QMP. The availability of
multiple timepoints allows improved estimation of the equilibrium genus abundance through summary measures (e.g., median). However, gains in
accuracy decrease with additional timepoints. We calculated the error on the median genus abundances (y-axis) depending on the number of timepoints
(100 most abundant genera, all participants, timepoints randomly chosen out of the full time series, 10.000 iterations). The elbow of the curve, a point that
signifies an optimum in the trade-off between accuracy and sampling effort, lies roughly around 5 samples for both RMP (a) and QMP (b). Gains in
accuracy level off afterwards as evidenced by the flatter curves.
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Fig. 4 Visualization of microbiome composition trajectories. Principal Coordinate Analyses of RMPs of the study cohort samples (squares) as well as
1104 FGFP participants (crosses), colored according to enterotype, namely Ruminoccocaceae (Rum, blue), Bacteroides 1 (Bact1, orange), Bacteroides 2
(Bact2, Pink), Prevotella (Prev, green). Arrows indicate the sampling sequence in time, color coded for participant.
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• Fecal samples collected for 20 women over six weeks (713 
samples) and sequenced (16S rRNA)

• 20 microbial networks constructed with fastLSA
PCoA of time series 
data collected from 
20 women, mapped 
onto the Flemish Gut 
Flora Data set (1104 
samples)

Color code: enterotype

Enterotypes: gut microbial 
compositions dominated by 
different genera (Rum = 
Ruminococcus, Bact = 
Bacteroides, Prev = Prevotella) 

Vandeputte,…, Faust, Raes (2021) Nature Communications 12:6740.
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Population-level analysis of gut
microbiome variation
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Fecal microbiome variation in the average, healthy population has remained under-
investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the
Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch
LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets
(N combined = 3948) revealed a 14-genera core microbiota, but the 664 identified
genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based
covariates were found associated to microbiota compositional variation with a 92%
replication rate. Stool consistency showed the largest effect size, whereas medication
explained largest total variance and interacted with other covariate-microbiota
associations. Early-life events such as birth mode were not reflected in adult microbiota
composition. Finally, we found that proposed disease marker genera associated to
host covariates, urging inclusion of the latter in study design.

S
equencing-based assessment of microbial
communities in human fecal material has
linked alterations in gut microbiota com-
position to disease, as well as chronically
suboptimal health and well-being (1–3).

The discovery of these associations has stimu-
lated the search for specific microbiome-based
biomarkers for a wide range of pathologies (4–9).
However, major challenges still hamper the once

assumed imminent translation of microbiome
monitoring into diagnostic and clinical practice.
One such hurdle is the lack of knowledge about
the impact of host and environmental factors on
microbiota variation within an average, healthy
population. Such information is essential for
robust disease marker identification in clinical
metagenomics (10). To identify and character-
ize major microbiome-associated variables, the

Flemish Gut Flora Project (FGFP) initiated a
large-scale cross-sectional fecal sampling effort in
a confined geographic region (Flanders, Belgium).
FGFP collection protocols combined rigorous
sampling logistics, including frozen sample col-
lection and cold chain monitoring, with exhaus-
tive phenotyping through online questionnaires,
standardized anamnesis and health assessment
by general medical practitioners (GPs), and ex-
tended clinical blood profiling (fig. S1). Encom-
passing an equilibrated range of age, gender,
health, and lifestyle, the FGFP cohort is expected
to be representative for the average gut micro-
biota composition in a Western European pop-
ulation (table S1). From this cohort, fecal samples
of 1106 individuals (98.5% of Western or Eastern
European ethnicity; 96.8% born in Belgium) with
time-matched blood and questionnaire data
were analyzed. Microbiome phylogenetic pro-
filing was performed using 16S ribosomal RNA
(rRNA) gene amplicon sequencing. In addition, a
Dutch cohort (N = 1135, LifeLines-DEEP, LLDeep;
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Fig. 1. Microbial community variation in the FGFP cohort, represented by principal coordinates analysis (PCoA, genus-level Bray-Curtis dissimilarity).
(A) Top 10 contributors to community variation as determined by canonical correspondence analysis on unscaled genera abundances, plotted on the two first
PCoA dimensions (arrows scaled to contribution). (B) FGFP sample density on the PCoA plot; arrows indicate density peaks enriched in the three previously
proposed enterotype drivers: Prevotella, Bacteroides, and Ruminococcaceae genera.
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Anuran in action: Human gut microbiome

randomized and degree-preserving positive control networks,
respectively. The anuran-reported p values (Z-score test) confirm
the observed trends; the set sizes of all but one tested difference
of intersections (differences up to 0.5) are different when
comparing the input networks to the negative control networks
(p < 0.0001). Only the set size of the two-network difference is not
significantly different compared to the degree-preserving nega-
tive control networks (p= 0.17). Consequently, we could not
identify whether there were more associations conserved
between only two participants than we expect from the degree
distribution alone.
Only three associations occur in ten or more networks. Hence,

we concluded that there is a low-prevalence CAN, but there are no
associations that are conserved across most or even half of the
individuals. Moreover, the resampling analysis demonstrates that
the number of networks is insufficient to identify the size and
prevalence of the CAN (Additional File 1: Fig. S1). A simulation
shows that both difference and intersection should stabilize after
a certain number of networks (Additional File 1: Fig. S2), but this is
not observed for the resampling analysis. The simulation suggests
that 30–40 networks would be necessary to find associations
present in 33% of networks.
Only four taxa, which were assigned to Dorea, Blautia,

Clostridiales, and Ruminococcaceae, had an uncorrected p value
below 0.15 for any of the permutation tests comparing the
distributions of degree, betweenness or closeness centralities
(Additional File 1: Fig. S3). Low p values were not found for
comparisons to degree-preserving negative control networks,
suggesting that degree distribution alone can sufficiently explain
high centrality rankings.
As the intersection of four participants was larger than expected

from the negative control networks, the CAN from this intersec-
tion was further investigated (Fig. 3). The CAN was divided in three
clusters with the Walktrap algorithm [29]. Of the two larger
clusters, one contains Dorea, Blautia, and Faecalibacterium as its

highest-degree nodes, while the other contains Sporobacter, a
group of Ruminococcaceae members, and a group of Clostridiales
members as its highest-degree nodes. Clusters were named after
their most central nodes. Because enterotypes were not equally
distributed across individuals, we could not carry out any statistics
to connect network clusters to enterotypes. However, the overlay
of differences in relative abundance across the network suggests
that the Ruminococcaceae taxon specifically was more abundant
in the Ruminococcaceae enterotype, while the opposite was true
for the Bacteroides node. Consequently, there may be a link
between CAN structure and enterotype assignment, which could
be driven by stool moisture [27].

The sponge CAN links to HMA–LMA status
We analyzed ten sponge order-specific networks that we inferred
from Sponge Microbiome project data [31]. Due to their sessile
lifestyle, sponges protect themselves from overgrowth, predation,
and competition through production of bioactive compounds
[34]. Such compounds may be produced by the sponges
themselves or by their microbial symbionts [35]. Consequently,
sponges may be expected to harbor symbiotic species that
improve sponge health. While their open connection with their
surroundings suggests that part of their microbiome may be
transient, stable core microbiomes have been identified [36].
Therefore, our toolbox provides an opportunity to investigate
conserved associations across sponges.
Networks were constructed with CoNet [2]. These networks had

a median edge number of 137, with the smallest network
containing 56 edges and the largest 1735 edges. We confirmed
that a different network inference tool, FlashWeave, was able to
recover many of the same associations despite large differences in
network size (Additional File 1: Fig. S4) [7].
Intersection differences up to six networks were significantly

larger than differences generated from the randomized and
degree-preserving negative control networks (p > 0.0001) (Fig. 4).

Difference in relative abundance between 
Ruminococcaceae and other enterotypes 

-0.12 0.04
Cluster

Alistipes

Blautia

Ruminococcaceae

0

Fig. 3 Core association network (CAN) constructed from associations present in at least four participants. Associations present in at least
four networks were included in the CAN, which was clustered with the Walktrap method for community detection. Clusters are named after
the most central taxa. Node color is mapped to the difference between median relative abundances for the Ruminococcaceae enterotype
compared to other enterotypes. Therefore, the pink color indicates that a taxon was more abundant in the Ruminococcaceae enterotype,
while a green color suggests that the taxon was less abundant in that enterotype. Node labels for higher taxonomic levels indicate that the
taxon is an unclassified member of a taxonomic group. All edge weights were positive.

L. Röttjers et al.

5

ISME Communications

Progression through the menstrual cycle was rescaled to 28 days (the
average length of a menstrual cycle) for all women. For days where there
was more than one sample, only the first sample was used. Taxa present in
less than 50% of participants were discarded from the analysis. Association
networks were constructed with fastLSA v1.0 [28] with data rarefied to
10,000 sequences per sample, with correlations inferred across a delay of
three time points (α= 0.05). Set sizes were analyzed with anuran, by
generating 20 networks per observed network and resampling 100
different groups from these. Positive controls were generated 20 times,
with a core size equal to 20% of the union of edges at 10% prevalence
(edges present in at least two networks) and at 50% prevalence (edges
present in at least ten networks). Set sizes and centralities with a p value
below 0.05 for comparisons to values from random networks were
considered significantly different from the random networks. The anuran
toolbox was also used to assess the effect of increasing the number of
participants.
The Walktrap community finding algorithm [29], implemented in the

igraph R package v1.2.6 [30], was used to cluster the inferred CAN as the
lack of negative edges in the CAN suggested that random walks could
sufficiently identify clusters. To visualize enterotype-specific patterns of
relative abundance, we computed the mean relative abundance of taxa
per individual. We then took the median relative abundances across all
individuals who belonged predominantly to the Ruminococcaceae
enterotype, an enterotype previously linked to lower stool moisture [27],
and subtracted from these all other median relative abundances, giving an
estimate of taxa that had high abundance in the Ruminococcaceae
enterotype compared to other enterotypes.
For the case study on the sponge microbiome, QIIME-processed data

were downloaded from Moitinho et al. [31]. Samples with fewer than 1000
counts were removed and the samples were rarefied to even depth at
1034 sequences. After rarefaction, the abundance data were first filtered
for 20% taxon prevalence across all samples, then once more to ensure
20% prevalence across different orders. Counts for removed taxa were
retained to preserve the sample sums. After excluding host orders with
fewer than 50 samples, 10 orders remained. CoNet v1.1.1 with
renormalisation was then used to infer association networks (Faust and
Raes [2]). Edges were generated with Pearson correlation, Spearman
correlation, mutual information, Bray–Curtis dissimilarity, and
Kullback–Leibler distance. Edges were included if at least one method
reached significance; only edges with a combined Q-value below 0.05
(estimated using a combination of permutation and bootstrapping) were
retained. The CoNet CANs were inferred with anuran generating 20
negative control random networks per host order and resampling these
100 times. For the positive controls, 20 network groups were generated
with a core size equal to 20% of the union of edges at 20% prevalence
(edges present in at least two networks) and at 50% prevalence (edges
present in at least five networks). Set sizes and centralities with a p value
below 0.05 for comparisons to values from random networks were
considered significantly different from the random networks. CoNet
networks were compared to FlashWeave networks [7]. FlashWeave
v0.16.0 was run as FlashWeave-S (sensitive set to true and heterogeneous
to false), with all other settings set to the default. To compare FlashWeave
networks to CoNet networks, anuran generated five randomized networks
per order-specific network and resampled these five times.
Prior research indicated that microbial abundance was a significant

driver of community structure in sponges [32]. Therefore, taxa in the CAN
were compared to taxa reported as indicators of high microbial abundance
(HMA) or low microbial abundance (LMA) [32]. CAN network clusters were
identified with manta v1.0.0 [33], as this algorithm has been designed to
handle negative edges in the CAN. To run the clustering algorithm, default
settings were used, except the number of iterations and permutations,
which was set to 200. A Chi-squared test was used to compare HMA–LMA
predictions to CAN cluster assignments (α= 0.05).

RESULTS
Null models support the existence of a small CAN in the
human gut
We inferred 20 networks from time series of stool samples with
the fastLSA network inference method [28], one network per
person. The median edge number of these networks was 35.5, but
one network contained only 6 edges while another contained 294
edges, indicating that there was significant variability in edge
number. Despite these differences, anuran was able to identify

relevant patterns through the use of null models and reported
that a low-prevalence CAN exists, with associations found in
20–25% of individuals.
The intersection of the observed networks in contrast to the

intersection of negative control networks supports the existence
of a small CAN (Fig. 2). The CAN 4→6 (associations present in at
least four networks but not in six networks) was much larger
compared to the negative control networks, with the CAN
containing 38 associations versus a median of 2 associations
and a median of 16 associations for the fully randomized and
degree-preserving negative control networks, respectively. Even
the CAN for the positive control networks with 10% edge
prevalence was slightly smaller, at 22 and 36 associations for

Negative control

Positive control - prevalenceInput

Random
Degree Random - 10%

Degree - 10%

Random - 50%

Degree - 50%

Fig. 2 Set sizes across networks for 20 host-specific human gut
networks and randomized networks. The set size is the number of
edges present in a particular number of networks. The set size is
shown for a set of sets of network intersections, meaning that the
CAN 4→6 is calculated as the number of edges in four or five
networks with all edges in at least six networks removed. Each input
network was generated from stool samples collected from healthy
volunteers and is built for a single volunteer. These networks were
then randomized either with the same degree distribution (degree)
or without this distribution (random). Moreover, each of the
networks was randomized with preservation of a part of the
network union for a subset of the randomizations as a positive
control. Hence, the positive control degree networks are rando-
mized versions of the group of observed networks with 20% of the
inferred associations present in at least 10% of individuals or in at
least 50% of individuals. Error bars represent the standard error
across different combinations of random networks. For edges
present in 4–6 networks, the set size of the input networks deviates
significantly from the set size from those of random networks with
or without degree preservation.
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• Significant core network for edges in four or five networks
• Network clusters correspond to enterotypes
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Anuran in action: tool comparison
A

B

Figure 10: Comparison of FlashWeave and CoNet networks. Host order-
specific networks were generated with both CoNet and Flashweave from samples
collected for the Sponge Microbiome Project [19]. The labels on each figure
refer to the sponge order. A) Sizes of the FlashWeave and CoNet networks. (B)
Difference and intersection showing the differences and overlap of the FlashWeave
and CoNet networks.

25

• Sponge-order specific 
networks constructed with 
CoNet and FlashWeave

• CoNet networks are 
systematically larger

• Tool-specific network 
intersection is highly 
significant

• Tools pick up the same 
associations, but CoNet
reports many additional 
edges (indirect edges)

Sponge orders
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Querying microbial networks

• A database to query microbial networks would be useful
• Existing one by Hu et al.: 

http://www.microbialnet.org/mind_home.html
• There are dozens of tools to construct microbial networks 
• Each tool comes with a range of settings
• Need for a flexible & local solution

only exceptions being posterior fornix, mid-vagina, and antecu-
bital fossae, which tended toward too few phylotypes to reach
significance; see Figure 3D and Table S2), again confirming the
microbiome’s habitat-driven modularity. When calculating net-
work properties in a body-area-specific manner, we found that the
overall average path length between nodes in the oral cavity,
which contributes most of the samples, was much larger (,3.4)
than those of the other body areas (ranging from ,1.1 to ,2.0). In
addition to supporting the aforementioned degree of inter-site
habitat formation in the oral cavity, this intriguingly suggests that
other body sites in which fewer samples are currently available (see
Table 1) have not yet exhausted the detection of microbial
relationships in the human microbiome. More samples and greater
sequencing depth may further improve detection power.

Key taxa including members of the Firmicutes act as
network hubs coordinating many relationships
throughout the microbiome

We next examined the associations of individual clades with
respect to interaction degree, observing highly connected ‘‘hub’’

clades to be found within each body area. Two classes of hubs
appeared in the association network: clades highly connected
within one body site, and clades acting as ‘‘connectors’’ between
multiple body sites. Hubs included both specific taxa (e.g.
Porphyromonas, see Figure 3A, Table S3) and larger taxonomic
groupings (e.g. the phylum Firmicutes). Within-site hubs were
often, although not always, abundant signature taxa (detailed
below), high-degree exceptions including Atopobium on the tongue
(28 total associations, 16 within-site) and Selenomonas on both tooth
plaques (20 total/19 within and 7 total/3 within for supra- and
subgingival, respectively). The latter provides a striking example of
the niche-specificity of these low-abundance within-site interac-
tors, as Selenomonas averages only 1.1% and 1.2% of the sub- and
supragingival plaque communities, respectively, but associates
preferentially (20 of 27, 74%) with members of the greater oxygen
availability supragingival community. The clade’s detection as a
within-site hub thus corresponds with the ecology that might be
expected of an organism known to be oxygen-sensitive, fastidious,
and grown best in co-culture [42].

Between-site hubs typically operated among body sites within
the same area as described above, with two of the five most

Figure 2. Significant co-occurrence and co-exclusion relationships among the abundances of clades in the human microbiome. A
global microbial interaction network capturing 1,949 associations among 452 clades at or above the order level in the human microbiome, reduced
for visualization from the complete network in Figure S1. Each node represents a bacterial order, summarizing one or more genus-level phylotypes
and family-level taxonomic groups. These are colored by body site, and each edge represents a significant co-occurrence/co-exclusion relationship.
Edge width is proportional to the significance of supporting evidence, and color indicates the sign of the association (red negative, green positive).
Self-loops indicate associations among phylotypes within an order; for a full network of all phylotypes and clades, see Figure S1. A high degree of
modularity is apparent within body areas (skin, urogenital tract, oral cavity, gut, and airways) and within individual body sites, with most communities
forming distinct niches across which few microbial associations occur.
doi:10.1371/journal.pcbi.1002606.g002

Human Microbiome Co-occurrence Relationships

PLoS Computational Biology | www.ploscompbiol.org 5 July 2012 | Volume 8 | Issue 7 | e1002606
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Mako – key ideas

• Use neo4j network database and CYPHER 
network query language

• Avoid a centralised database; create network 
database on the fly from user networks instead

Röttjers & Faust “Fast and flexible analysis of linked microbiome data with mako” 
(2022) Nature Methods 19, 51-54. 

Sam Röttjers
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Mako in action

• Networks constructed for 60 
microbiome data sets taken 
from QIITA (tool: FlashWeave)

• Networks queried for specific 
motifs

• More positive than negative 
edges found

• Animal-derived microbial data 
sets enriched in positive 4-
node clique

Gonzalez et al. (2018) “Qiita: rapid, web-enabled microbiome meta-analysis” Nature Methods 15, 796–798.
Faust et al. (2015) “Cross-biome comparison of microbial association networks” Frontiers in Microbiology 6, 1200.
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Faust et al. Cross-biome microbial network comparison

FIGURE 2 | Differences between host and soil networks. Soil networks fall into two groups, characterized by low (QIIME soils) and high sequencing depth
[Earth Microbiome Project (EMP) soils], whereas host networks constructed from QIIME and Human Microbiome Project (HMP) samples have comparable PEP.
When taking all networks together, PEP in soil is significantly lower (p-value: 0.0002 according to the Wilcoxon rank sum test) than in host (A). The average clustering
coefficient (B) and network density (C) are also significantly different (p-values: 0.004 and 0.002, Wilcoxon rank sum test). Network density is computed as
2E/N(N-1), where E is the edge number and N the number of taxa in the processed matrix.

properties considered in comparisons include among others the
number of edges as a measure of complexity (Dini-Andreote
et al., 2014), the network diameter, density, average path length,
and clustering coefficient (Peura et al., 2015) and the module
number (Williams et al., 2014). In some cases, interesting
ecological insights can be gained from a network comparison.
For instance, the extent of network fragmentation after node
deletion has been applied as a measure of robustness to random
or targeted species removal (Widder et al., 2014; Peura et al.,
2015) as well as a measure of stochasticity (Widder et al., 2014).
Widder and co-workers found a lower network fragmentation
for river regions with intermediate catchment areas as compared
to those with large or small catchment areas. They explain
this observation by a stronger hydrological variability and
higher dispersal limitation upstream and a larger number of

source communities down-stream as two different sources of
increased stochasticity in these river regions (Widder et al.,
2014). Furthermore, the consistency of individual taxon links
can be evaluated by cross-network comparison (Williams et al.,
2014; Xu et al., 2014). The effect of various network properties
on co-occurrence network inference accuracy has also been
intensively studied (Berry and Widder, 2014).

However, the potential impact of community properties such
as alpha and beta diversity on the properties of co-occurrence
networks has not yet been well explored, though it is crucial
for the interpretation of these network properties. In addition,
previous network studies mostly focus on a single biome. We
therefore built 20 biome-specific networks from 7 environmental
and 13 host-associated sample sets, which together span 11
biomes andwhich differ widely in their sample and taxon number

Frontiers in Microbiology | www.frontiersin.org 3 October 2015 | Volume 6 | Article 1200

Previous findings on Qiita 
& EMP data with CoNet



Mako in action

• Task: find associations between 
groups of gut bacteria able to 
synthesize propionate

• Mako applied to collection of 60 
microbial networks constructed 
from QIITA to screen for 
associations

• Most frequent: Bacteroides and 
Lactobacillus
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What about network properties?

R.T. Paine (1969). A Note on Trophic Complexity and Community Stability. The American Naturalist 103,  91-93.

Paine on keystone species: “These 
individual populations are the keystone 
of the community’s structure, and the 
integrity of the community and its 
unaltered persistence through time, that 
is, stability are determined by their 
activities and abundances”

Can we identify keystone 
species with networks?

6 FEMS Microbiology Reviews

Figure 2. Emergent node properties in networks. (A) Networkwith the greennode
representing a hub, as it has the highest degree. (B) Network with the green node
having the highest betweenness centrality. (C) Examples of motifs that can be
found in networks. The feed-forward motif: (here, a 4-node motif is shown) is a
known motif in gene regulatory networks (Shen-Orr et al. 2002), while the clique
and triad motifs are examples of motifs that can be found in undirected micro-
bial networks (Ma and Ye, 2017). (D) Assortativity in a network. The green node is
assortative, because it only connects to other nodes with the same degree. The
blue node is disassortative. (E) Fragility or robustness in a network. This network
is fragile to targeted attacks, because any attack on the green nodes fragments
the network.

species, betweenness centrality, network motifs, assortativity,
transitivity, modularity and network robustness. A graphical
summary of these properties is provided in Fig. 2.

De!ning node importance in networks

In the search for meaningful biological knowledge, hub species
are frequently an outcome of microbial network analysis. Hub
species are nodes that have the highest degree in the net-
work and are therefore associated with a high number of other
species. Identifying these species is straightforward, and their
importance to community structure seems almost intuitive. Yet,
the ecological role of hub species is still unclear. For example,
hub species may represent keystone species, which are known
to be important for ecosystem structure and functioning. Their
removal can cause the ecosystem to collapse (Paine 1969). Hub
species do not necessarily share the same biological implica-
tions, as investigators cannot infer such major changes unless
they carry out experiments that involve removal of hub species
and randomly selected control species (Berry and Widder 2014).
Moreover, recent work has demonstrated that known keystone
species in macro-ecological networks do not necessarily result
in detectable signals in co-occurrence networks (Freilich et al.
2018). This further weakens the assumption that hub species are
likely to represent keystones.

A related concept to hub species are the Strongly Interacting
Species (SIS) (Gibson et al. 2016). In simulations, these ‘levers’
were shown to be able to steer ecosystems towards certain com-
munity types. For these community shifts to occur, heteroge-
neous interaction strengths are necessary, with SIS having the
strongest interactions. Overall, the role of hub species in com-
munity structure is poorly de!ned and may contain aspects of
keystone species as well as lever species. In general, without
further experimental validation, it is unclear whether predicted

Figure 3. Node directionality can in"uence node importance. (A) In this undi-
rected network, the red-bordered blue node scores best on centrality measures.
As movement across this node is possible, in silico simulations of randomwalks,
shortest paths or other types of movement will support the hypothesis that this
node plays a key role in network structure. (B) In this directed network, in silico
simulations of movement processes will not traverse the blue node. Hence, the
red-bordered grey node can now be identi!ed as having the most in"uence.

hub species or SIS act as keystones or levers in the ecosystem of
interest.

Beyond degree, other types of node centrality can be a
proxy for node importance (Borgatti 2005). For example, the
betweenness centrality of a node is calculated as the total
number of shortest paths from all nodes to all other nodes that
pass through the node (Freeman 1977). Therefore, a node that
has a degree of two can have the highest betweenness centrality
in a network if it connects clusters that make up the network.
Despite its low degree, it can affect large sections of the network.
Apart from shortest paths, random walks through a network
can also be used to estimate node centrality (Newman 2005).
Nodes that are visited more frequently during a random walk
are then assigned greater centrality estimates. Other forms
of centrality exist as well, each making different assumptions
on the nature of interactions between nodes. For example,
betweenness centrality assumes that the shortest path matters
(e.g. package delivery from one location to another), whereas
centrality measure based on random walks assumes that infor-
mation or metabolites travel randomly (e.g. gossip in a social
network). Applying the wrong centrality measure to a network
can result in incorrect measures of node importance (Borgatti
2005). As the mechanisms behindmicrobial interactions may be
diverse and are generally unknown, we cannot recommend an
optimal choice for centrality measures of microbial networks.

Moreover, some measures of centrality rely on the sim-
ulation of movement on networks. Their interpretation and
relevance differs depending on the type of network; walks on
an undirected network faces fewer limitations than walks on a
directed network. Hence, directed networks constructed from
time series data represent community structure differently
from undirected networks constructed from cross-sectional
datasets. Fig. 3 showcases this issue. In the undirected net-
work shown in Fig. 3A, the blue node appears to be a hub
species. However, as the directionality pattern in 3B shows,
it bene!ts from the presence of other species, but does not
in"uence them. In the directed network shown in Fig. 3B, the
blue node appears to be a ‘dead end’, whereas walks can pass
freely from the grey node to other nodes. Hence, simulations
that rely on random walks will indicate that the grey node
is the most in"uential one, as most random walks will pass
through it.

Downloaded from https://academic.oup.com/femsre/advance-article-abstract/doi/10.1093/femsre/fuy030/5061627
by guest
on 29 August 2018

Hub taxon: 
high degree
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• Not well (in synthetic data) 

good

bad

Connector taxaHub taxa

Known 
network

Can tools predict hub taxa?

Röttjers & Faust (2018) FEMS Microbiology Reviews 42, 761-780.
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• When a larger number of predicted top hub nodes is 
considered, CoNet significantly enriches for correct hubs 
(indirect edges may help with this – they are not always bad)

Matching fraction of hub nodes P-value of matching fraction

P-value = 0.05

Can tools predict hub taxa?
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• Open question – perhaps in some cases

Are correctly identified hub taxa keystones?

microbes are likely “keystone” species with an important role in determining network structure
for the leaf microbial community.

Experimental Testing of the Microbial Hub Genera Albugo and Dioszegia
The hub microbes Albugo and Dioszegia were strongly negatively correlated to many of the
bacteria in the microbial community networks but are themselves affected by abiotic and host
factors. For example, Albugo is affected by host resistance encoded by single A. thaliana genes
[45], and Dioszegia, although widespread, was seasonal, being significantly more abundant in
spring samples (S4 Table). In light of the effects of abiotic and host factors on microbial com-
munity structure and the presence of central hubs in the microbial network, we hypothesized

Fig 3. Computational Experiment 3: Hubmicroorganisms are critical determinants of the microbiome interaction network structure. A. Most high-
degree bacteria (including the genus of Comamonadaceae designated as a hub) are first neighbors (i.e., direct and negative correlates) of the hub microbial
genera Albugo sp. and Dioszegia sp., and many group into an intercorrelated cluster. First neighbors of the three “hub”microbes are shown in color and the
rest of the network is shown in greyscale. The depiction is a spring-loaded visualization of the network in Fig 2 where tightly correlated nodes cluster together.
B. The hub microbes were partly independent, since about half of the nodes to which they correlated were unique and half were shared. They together
directly reach over half (100/191) of all nodes in the network. C. Hub microbes (high degree organisms with high centrality) can be considered as reasonable
keystone species, since the magnitude of their effects in the network extend over more edges than nonkeystone nodes (high abundance organisms with low
degree and low centrality) but over fewer than keystone nodes (high degree organisms with low centrality). An edge was considered dependent if it was not
observed in a network built using partial correlations controlling for abundance of the test microbes. Error bars show standard deviation, and significance was
tested with a one-sidedWelch’s t test where (*): p < 0.1, (**): p < 0.05 and (***): p < 0.01. Hub nodes: Albugo sp., Dioszegia sp. and a genus of
Comamonadaceae. Keystone nodes:Mycobacterium sp., Rhodoplanes sp., and Rhizobiales (other). Nonkeystone nodes: Pseudomonas sp.,
Oxalobacteriaceae (other), and Sphingomonas sp. (S1_Data.xlsx)

doi:10.1371/journal.pbio.1002352.g003

Microbial Hub Taxa Determine Host Microbiome Variation

PLOS Biology | DOI:10.1371/journal.pbio.1002352 January 20, 2016 10 / 31

Fig 4. Experiment 4: Species of the obligate biotrophic pathogen and hub genus Albugo can affect colonization of microbes in the phyllosphere,
linking abiotic or host genotype factors to a mechanism for observedmicrobial community variation. A. When Alb. laibachii Nc14 or Alb. candidaNc2
are absent due to abiotic (physical spore removal) or host (resistance) factors, the pathogen-associated microbial community increases in alpha diversity
(also see S12 Fig) is less replicable (A. laibachii only) and shifts significantly (A. laibachii only). B. Several genera of bacteria were observed to more
efficiently colonize the endophytic compartment of the phyllsophere in plants infected with Albugo sp. than in controls. For A and B: Ws-0: A. thalianaWs-0,
Col-0: A. thalianaCol-0, Ksk-1: A. thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Filter removal of Albugo on all hosts. (S1_Data.
xlsx)

doi:10.1371/journal.pbio.1002352.g004

Microbial Hub Taxa Determine Host Microbiome Variation

PLOS Biology | DOI:10.1371/journal.pbio.1002352 January 20, 2016 12 / 31

Fig 4. Experiment 4: Species of the obligate biotrophic pathogen and hub genus Albugo can affect colonization of microbes in the phyllosphere,
linking abiotic or host genotype factors to a mechanism for observedmicrobial community variation. A. When Alb. laibachii Nc14 or Alb. candidaNc2
are absent due to abiotic (physical spore removal) or host (resistance) factors, the pathogen-associated microbial community increases in alpha diversity
(also see S12 Fig) is less replicable (A. laibachii only) and shifts significantly (A. laibachii only). B. Several genera of bacteria were observed to more
efficiently colonize the endophytic compartment of the phyllsophere in plants infected with Albugo sp. than in controls. For A and B: Ws-0: A. thalianaWs-0,
Col-0: A. thalianaCol-0, Ksk-1: A. thaliana Ksk-1. Green: Susceptible hosts, Red: Resistant hosts, Yellow: Filter removal of Albugo on all hosts. (S1_Data.
xlsx)

doi:10.1371/journal.pbio.1002352.g004

Microbial Hub Taxa Determine Host Microbiome Variation

PLOS Biology | DOI:10.1371/journal.pbio.1002352 January 20, 2016 12 / 31

susceptible versus resistant A. thaliana varieties

A.l./A.c.: 
Albugo
species

Example of a validated hub species (a parasite):

Agler et al. (2012) “Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation” 
PLoS Biology 14 (1) e1002352.
Röttjers & Faust (2018) “Can we predict keystones?” (Comment) Nature Reviews Microbiology 17, 193

A. thaliana leaf 
microbiome
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Summary: what to do when you want to build a 
microbial network

• Data preprocessing: split samples into groups if they are 
strongly heterogeneous -> filter and sum rare taxa -> normalise 
abundances -> if appropriate and available multiply with total 
counts 

• Network inference: take metadata into account and reduce 
indirect edges (currently only FlashWeave supports both)

• Analyse the hairball: map external data onto nodes if 
available, check for enrichment of particular taxa or functions 
in clusters, compare with other networks and known 
interactions, experimentally validate interaction candidates



• SparCC, MENA, LSA, CoNet and SPIEC-EASI: 
http://msysbiology.com/microbialnetworks/

• FlashWeave and network analysis (manta & 
anuran): https://rutjers.science/teaching/

• Mako tutorials: 
https://ramellose.github.io/mako_docs/

Microbial network construction and analysis 
tutorials



Next steps in microbial network 
analysis

• Network annotation: link taxa to known 
physiological properties such as pH optima
– Tool development ongoing (microbetag) 

• Experimentally resolve microbial interaction 
networks to benchmark inference tools on 
biological data

• Explore whether microbial network properties 
reflect ecosystem properties
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• The ratio trick: since total abundance T cancels 
out in a ratio, the ratio removes dependency on 
total abundance in a composition

• CLR transform (introduces neg values):

Tackling compositionality

𝑋!
𝑋"
=
𝑋!
𝑇
𝑋"
𝑇

Xi, Xj: abundances of taxa i and j

𝑐𝑙𝑟 𝑋! = log(
𝑋!

∏"
#𝑋"

$/#)
Divide abundance of taxon i by the 
geometric mean of the abundances in 
its sample and take the log
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Relative vs absolute abundances in network 
inference
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Chemostats with different nutrient concentrations in the inflow. In case density differences are solely 
determined through nutrient concentration, total counts are a confounder to be removed.

Water tap size 
represents 
nutrient 
concentration in 
the inflow



Definition of measures

 

d(x,y) = xi - yi( )å
2

d(x,y) = xi log
xi
yi

æ 

è 
ç 

ö 

ø 
÷ + yi log

yi
xi

æ 

è 
ç 

ö 

ø 
÷ 

æ 

è 
ç 

ö 

ø 
÷ å

d(x,y) = log(xi) - log(yi)( )2å

Hellinger
(x and y each sum up to 1)

Kullback-Leibler
(x and y each sum up to 1)

Logged Euclidean

Require pseudo-
counts or 
smoothing because 
log(0) = -Inf

 

d(x,y) = xi - yi( )2åEuclidean distance

Bray Curtis 
(Steinhaus is the 
corresponding 
similarity)

 

d(x,y) =1-
2 min(xi,yi)å

xi + yiåå

Recommended for compositional data (absolute values 
are not of interest)

Recommended for taxon abundance data

Bray-Curtis dissimilarity is 
computed on row-wise 
normalized data (i.e. x and y
each sum up to 1) 

Hellinger distance and 
Kullback-Leibler
divergence are 
mathematically 
related measures.
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d(x,y) =
xi - x( ) yi - y( )å

xi - x( )2å yi - y( )2å

d(x,y) =1-
6 di

2å
n n2 -1( ),di = xi - yi(ranks)

For Pearson, vectors x and y 
are standardized (subtraction 
of mean, division by standard 
deviation) and for Spearman, 
ranks are considered, so 
vector-wise standardization is 
not necessary for either of 
these measures. This also 
means that correlations are 
scale-invariant, so do not 
change when multiplied with 
a constant. 

 

d(x,y) = var(log(
xi
yi
))

Pearson

Spearman

Variance of log-ratios
Variance of log-
ratios, conceived 
for compositional 
data

Definition of measures continued

 

d(x,y) =1- e- d (x,y)

Aitchison proposed a scaling 
between 0 and 1, where 1 
corresponds to maximal 
similarity:

Require pseudo-
counts or smoothing 
because log(0) = -Inf
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Comparison of measures

Experiment: Select 
1,000 top-ranked and 
1,000 bottom-ranked 
measure-specific 
edges in Houston 
data subset of HMP 
V35 mothur-
processed 16S data 

Jaccard similarity heat map 
(Ward clustering) based on 
edge overlap
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Fisher’s method of p-value merging

		 
X2k
2 ∼ −2 ln(pi )

i=1

k

∑
k: number of association measures
pi: p-value of the ith association measure
X2

2k: Value is chi-square distributed with 2k degrees of freedom 

The resulting p-value is the p-value of the Chi-square 
value.

Fisher’s method is biased by correlated association 
measures. This bias is taken out by Brown’s p-value 
merging method.
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shuffle selected taxon pair

renormalize matrix group-wise
compute random score for taxon pair 
on shuffled, renormalized 
abundances

Fah Sathirapongsasuti

all 
taxa in 
one 
group

CoNet: ReBoot

permutation with renormalization (ReBoot)
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• Permutation test: removes correlation, but also any bias due 
to compositionality
• Permutation with renormalization: shifts null distribution

CoNet: ReBoot II

true anti-
correlation 
between b1 
and b3

spurious correlation 
between b2 and b4 
introduced by 
normalization

bootstrap distribution mean
renormalized permutation distribution mean

raw data normalized data

significant not significant

Fah
Sathirapong-
sasuti
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Simulation parameters:
samples = 50
pi=1/S (max. even)
sequencing depth = 1000
θ = 0.002
repetitions = 100 (black)
repetitions = 10 (blue, green)
permutations: 100
bootstraps: 100
BH = Benjamini-Hochberg

CoNet’s assessment of significance reduces number of 
false positives
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Taxon number versus edge number
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Spearman
Spearman, permuted and BH-corrected
Spearman permuted, bootstrapped and BH-corrected

(matrix not normalized, permutation carried out without renormalization)

Simulations with Dirichlet-
Multinomial
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SparCC
• basic idea: use the variance of log ratios (a distance measure robust to 

compositionality bias, Aitchison 2003)

• the variance of log-ratios is not scaled, i.e. its maximum value is unknown 
• starting from the variance of log ratios, an approximation is developed to 

estimate correlations robustly

• SparCC estimates covariance ρ for all taxon pairs, assuming that most pairs 
are only weakly correlated

Friedman & Alm (2012) “Inferring Correlation Networks from Genomic Survey Data.” PLoS Comp Bio 8 (9), 
e1002687.
Aitchison (2003) “A concise guide to compositional data analysis” In: 2nd Compositional Data Analysis 
Workshop, Girona, Italy. 

€ 

D(xi,x j ) = var log
xi
x j

" 

# 
$ $ 

% 

& 
' ' 
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# 
$ $ 
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& 
' ' 

€ 

D(xi,x j ) =ω i
2 −ω j

2 − 2ρijω iω j

where ω is the variance of the 
(log-transformed) abundance 
vector of taxon i and ρ the 
covariance between taxa i and j 

xi, xj are taxon abundance 
vectors 
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SparCC Parameters
Iterations
• SparCC fits a Dirichlet distribution to the counts and samples from 

this distribution to estimate counts 
• final correlation is reported as the median over several sampling 

rounds
P-values 
• Bootstraps generated by sampling with replacement
• P-values computed from bootstrap distribution as the proportion of 

bootstrapped correlations that are at least as large as the original 
correlation value 

Implementations
• https://bitbucket.org/yonatanf/sparcc (original in Python)
• Part of the SPIEC-EASI R package
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Discrete version of GLV: Ricker model

Fisher and Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from 
Metagenomic Timeseries using Sparse Linear Regression. PLoS one 9, e102451.

		
xi(t +δt)=ηi(t)xi(t)exp(δt aij

j
∑ (x j(t)− x j ))

δt: discrete time step 
Xi(t): abundance of target species i at time point t
<xj>: steady state abundance of species j (carrying capacity)
ηi(t): log-normal noise 
aij: interaction coefficient between taxa i and j

For ηi(t) = 1 (no noise) and δt -> 0, Ricker model reduces 
to generalized Lotka-Volterra in continuous form.
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LIMITS - principle

		

y1 = log xi(2)− log xi(1)= aij(x j(1)− x j )
j
∑

y2 = log xi(3)− log xi(2)= aij(x j(2)− x j )
j
∑

y3 = log xi(4)− log xi(3)= aij(x j(3)− x j )
j
∑

↓

yt = log xi(t +1)− log xi(t)= aij(x j(t)− x j )
j
∑

		ai* = yX
−1

ηi(t): 1, δt: 1 (no noise, smallest 
possible time step)

• LIMITS: Learning Interactions from MIcrobial Time Series
• Principle: select interaction coefficients such that change between 

consecutive time points in one species is well predicted from the 
other species

Fisher and Mehta (2014). Identifying Keystone Species in the Human Gut Microbiome from 
Metagenomic Timeseries using Sparse Linear Regression. PLoS one 9, e102451.

Pseudo-inverse of 
species abundance 
matrix of selected 
predictor species

interaction matrix 
row (interactions 
between species i
and selected 
predictor species)

Vector of log abundance 
differences for species i for 
all time point pairs (t+1,t)
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• Data is split into training and test set. Inference is done 
on training set, prediction error is calculated on test set.

• Interaction matrix inference: For each species i, select 
the set of predictor species j that minimise the error on 
the test set via step-wise forward regression

• Repeat data splitting and interaction matrix inference a 
number of times and report the median (bootstrap)

LIMITS – workflow

Error measurements:
• Difference between y and X in the test set, with interaction coefficients 

inferred from the training set (reported by LIMITs)
• Difference between observed time series and time series predicted with 

Ricker (simulation with inferred interaction coefficients)
• Difference between known and inferred interaction matrices
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Examples of network properties

k=3
n=1
Ci = 1/3

E=4
S=4
D = 2*4/(4*3)=2/3 

Ci = 2/3
D = 5/6

Ci = 1
D = 1 
fully connected clique

� 

Ci =
2⋅ n

ki ⋅ (ki −1)

k = number of neighbors of node i
n = number of edges between the 
neighbors of node i

i

i

i � 

C =
1
S
⋅ Ci
i=1

S

∑

Clustering coefficient of node i

Average clustering coefficient

� 

D =
2⋅ E

S⋅ (S −1)

Network density (connectance)

E = number of edges in the network
S = number of taxa in the matrix
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Indirect edge removal: Overlap

Overlap uses the start and length of co-occurrence in time

overlap
à indirect

No overlap
à not indirect
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SI

8 possible sign patterns for two taxa and one environmental factor in a triplet

SI SI SI Sign patterns 
indicating an 
indirect taxon 
relationship

SI

Sign patterns 
indicating a direct
taxon relationship

SI SI

A B B B B

BBB

A A A

A A A

SI

BA

Indirect edge removal: sign patterns

Taxon
Env. factor
Positive link
Negative link
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Indirect edge removal: interaction information

• Interaction information indicates whether a triplet 
contains an indirect edge

• It is an assumption that the indirect edge is the taxon-
taxon edge (this is a good assumption for environmental 
factors that cannot be quickly influenced by taxa, such 
as temperature)

€ 

II = CI(X,Y | Z) −MI(X,Y )

CI = conditional mutual 
information
MI = mutual 
information
II = interaction 
information

negative: redundancy zero: no interaction positive: synergy

!!CI(X ,Y |Z)=MI(X ,Y )!!CI(X ,Y |Z)<MI(X ,Y ) !!CI(X ,Y |Z)>MI(X ,Y )
SI

A B

SI

A B

SI

A B

Taxon
Env. factor
Positive link
Negative link
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• Problem: edges in microbial networks are often driven by 
environmental factors

• EnDED combines several methods to remove indirect edges

EnDED: shrink the hairball

Challenge #5: What about higher-order
interactions (HOIs)?

According to a stringent definition, an HOI is an interaction
between a number of species that is altered by an additional
species [25]. For instance, if one microbe depends on a
molecule secreted by another, and a third microbe produces
the same molecule, the cross-feeding relationship between
the first two microbes is weakened. HOIs affect community
stability and diversity in simulations [26, 27] and were
shown to alter host fitness in experiments [28]. HOIs can be
detected by measuring growth curves of species pairs and
parameterizing a HOI-free model on these data. Deviations
of model predictions from community behavior may then
indicate the presence of HOIs (e.g., refs. [28, 29]). How-
ever, since the HOI-free model may fail to predict obser-
vations for other reasons than the presence of HOIs, this
approach is not guaranteed to identify HOIs in the narrow
sense of modified interactions [25].

Most microbial network construction tools neglect HOIs.
Previously, the principle of entropy maximization (finding
correlations such that an entropy function is maximized) has
been employed to infer HOIs between genes from gene
expression data [30]. It is an open question whether entropy
maximization could also infer HOIs from microbial

abundance data. In presence/absence of data, association
rule mining can uncover logical rules that can be interpreted
as HOIs. An example for such a rule is a species A that is
only found in the presence of two species B and C, for
instance, because it needs two cofactors produced by B and
C, respectively. In this case, the interaction between A and
B or A and C is nonexistent until the arrival of the third
species, which can be seen as an extreme case of interaction
modification. Although a few association rules involving
more than two microbial taxa have been reported previously
[31], it is not clear whether these are due to overfitting (a
challenge for all HOI inference algorithms), environmental
factors, combinations of pair-wise associations, or true
HOIs. Finally, visualizing HOIs is not trivial and requires
hypergraphs, i.e., networks where an edge connects more
than two nodes. Interpreting and analyzing such hyper-
graphs are additional open challenges of HOIs.

Challenge #6: How to evaluate microbial
network construction in silico?

Evaluations are carried out to assess which tools infer the
most accurate networks and to explore how sample number
and other data properties affect tool performance. Given the

Fig. 2 Treatment of environmental heterogeneity. a Taxa respond
to environmental factors such as pH. b A common response to
environmental factors introduces indirect edges in the microbial net-
work. To deal with this challenge, c environmental factors can be
integrated during network construction and considered when inter-
preting the network, d samples can be stratified, either manually or
through clustering techniques, and a network constructed per sample

group, e the impact of environmental factors on taxon abundances can
be removed before network construction through regression (often
implemented assuming linear environmental response functions), and f
the network can be filtered to remove indirect edges after construction,
for instance, using data processing inequality [24] or network decon-
volution [49].

K. Faust

Ina Deutschmann

random permutation test if the theoretical p values for
the comparison are below 0.05; the number of iterations
was 2000. Although we are aware of time-delayed inter-
actions and that eLSA [11, 12] could account for them,
we considered our sampling interval as too large (1
month) for inferring time-delayed associations with a
solid ecological basis. Thus, in our study, we focused on
contemporary interactions between co-occurring mi-
crobes. For the BBMO dataset, the Bonferroni false dis-
covery rate, q, was calculated for all edges from the p
values using the R function p.adjust [40]. Lastly, we used
a significance threshold for the p and q value of 0.001 as
suggested in other works [22].

Intersection combination of EnDED—environmentally
driven edge detection methods
EnDED includes four methods: SP, OL, II, DPI (de-
scribed below), and their intersection combination (an
ensemble approach of the four methods). We applied
these methods to find environmentally driven associa-
tions of microorganisms that were within an environ-
mental triplet, as in [23]. An environmental triplet is a
special case of a closed triplet where one of the nodes
corresponds to an environmental factor and the other
two nodes correspond to microorganisms. We define the
closed triplets, where there is an edge between each pair
of three nodes, as T = {v,w, f} where v and w are two

microorganisms, and f is an environmental component
(see Fig. 3).
For the intersection combination, all four individual

methods must converge to the same solution, i.e., if
all methods classify the microbial edge as environ-
mentally driven, the edge is removed from the net-
work. If a microbial association is within several
environmental triplets, at least one of them must in-
dicate the association as environmentally driven. In
sum, the intersection combination retains an associ-
ation in the network if no triplet classifies the associ-
ation as environmentally driven.

Sign pattern
The SP method [23] filters environmentally driven
edges from a network in which a positive association
score indicates co-occurrence, and a negative associ-
ation score indicates mutual exclusion. Let svw be the
sign of the association score of the association be-
tween v and w (i.e., svw = + or svw = −). A closed trip-
let T has eight SP combinations that group into two
sets (see Fig. 3). If the product of the three associ-
ation scores is positive, then the SP suggests that the
edge between the two microorganisms is environmen-
tally driven. Otherwise, if the product of the three as-
sociation scores is negative, SP does not suggest that
the association is environmentally driven.

Fig. 3 EnDED methods overview. EnDED is an implementation of four methods aiming to determine whether an edge between two
microorganisms is indirect through the action of an environmental factor. The four methods are sign pattern, overlap, interaction information,
and data processing inequality (see “Methods” section). Each method can be used individually or in combination. Here, we show the intersection
combination approach, i.e., only if all methods classify an edge as indirect, it is removed from the network. Otherwise, the edge is classified as not
indirect and kept in the network

Deutschmann et al. Microbiome           (2021) 9:232 Page 13 of 18

Deutschmann et al. (2021) “Disentangling environmental effects in 
microbial association networks” Microbiome 9, 232.

Su
pp

le
m

en
t



EnDED performance

True positive: false edge correctly removed
False negative: false edge not removed 

False positive: correct edge falsely removed
True negative: correct edge not removed 

DPI: data-processing 
inequality (edge with 
smallest mutual 
information in triplet is 
removed)
II: Interaction 
information (indicates 
redundancy in triplets)
OL: overlap (time series)
SP: Sign pattern
Combi: Combination

Blanes Bay Microbial Observatory (BBMO) [41]. These
samples included bacteria and eukaryotes of two size-
fractions: picoplankton (0.2–3 μm) and nanoplankton
(3–20 μm). We estimated community composition via
metabarcoding of the 16S and 18S rRNA gene, and in-
ferred an association network, hereafter referred to as
BBMO network (see “Methods” section). The BBMO
network contained 762 nodes including 754 ASVs
(Amplicon Sequence Variants) and 8 environmental fac-
tors, and 30498 edges including 29820 microbial edges
and 607 edges between a microorganism and an envir-
onmental factor. The network contained more positive
(24458, 82.0%) than negative (5362, 18.0%) microbial as-
sociations (Fig. 2).
We found that 25230 (84.6%) of the network edges

were in at least one and in maximum six environmental
triplets (Fig. 2 and Supplementary Table S3). Overall, we
detected 35166 environmental triplets within the BBMO
network. Of the ten considered environmental factors,
PO4

3− and salinity were not associated to any micro-
organism in the network, and turbidity and NH4

+ were
not found within a triplet. Thus, six environmental fac-
tors remained: temperature (1831 environmentally
driven edges were removed due to Temperature) and
day length (652 removed edges) were the top two

environmental factors affecting microbial associations,
followed by total chlorophyll (175), SiO2 (5), and NO3

−

(1); no edge was removed due to NO2
−.

The intersection combination removed 2488 (≈ 8.3%)
associations from the BBMO network. We classified and
quantified these indirect edges according to the domain
of the nodes (bacteria–eukaryotes, nanoplankton–pico-
plankton), environmental factor, and the number of trip-
lets a microbial edge was in (Fig. 2 and Supplementary
Table S4). Compared to the intersection combination,
each method individually removed more edges: 84.6%
(SP and OL removing all microbial edges present in a
triplet), 25.7% (II), and 24.8% (DPI); that is, removal was
3 to 10 times larger.
We also determined for each association the Jaccard

index, which indicates how often two microorganisms
appear together in the dataset. We assume that two mi-
crobes that appear together < 50% of the time are less
likely to have true contemporary ecological interactions
and the corresponding association is more likely to be
false. We found that only 27.7% of the indirect associa-
tions had a Jaccard index above 0.5 compared to 61.1%
of the associations that were not indirect. This discrep-
ancy is bigger for negative edges, with 1.2% above and
98.8% below 0.5 (Table 1). The fact that over 72.3% of

Fig. 1 Evaluation of EnDED: intersection combination and individual methods on simulated networks. Using 1000 simulated networks, and 1000
simulated networks incorporating noise, we evaluated EnDED’s performance. A The evaluation measurements true positive rate (TPR), true
negative rate (TNR), accuracy (ACC), and positive predictive value (PPV) for each individual method, i.e., sign pattern (SP), overlap (OL), interaction
information (II), and data processing inequality (DPI), as well as the intersection combination (COMBI). SP and OL perform best according to TPR
and ACC, while the intersection combination performs best according to TNR. All methods performed well according to PPV. The intersection
combination, DPI and II performed better on noisy data according to TNR because less edges were removed along with less true interactions. B
The ROC curve for each environmentally driven edge detection method as well as their intersection combination
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• Accuracy assessed on simulated data (extended Lotka Volterra model)
• Method combination: lowest accuracy but highest positive predictive 

value (removes fewer true edges at cost of keeping false ones)
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EnDED in action

Taxon size fraction: nano and pico, kingdom: B=Bacteria, E=Eukaryotes 

environmentally driven associations have a Jaccard index
equal or below 0.5 strengthens the decision of their
removal.
The intersection combination removed more negative

than positive edges, 1554 and 934, respectively (Fig. 2).
However, there were 20334 positive and 4896 negative
microbial associations that were found in at least one

environmental triplet, so the method removed 31.7% of
the negative and only 4.6% of the positive edges. If we
randomly removed 2488 edges, we would expect 18.0 %
to be negative (i.e., 448) and 82.0% of them to be posi-
tive (i.e., 2040). If we restrict these calculations to the
25230 microbial associations that were found in at least
one environmental triplet, with 20334 of them being

Fig. 2 Quantification of environmentally driven associations in the BBMO network A The first column shows the number (in thousands, K) or
fraction of microbial associations divided by domain: bacteria–bacteria associations (B), bacteria–eukaryote associations (BE), and eukaryote–
eukaryote associations (E). The second column shows the number (or fraction) of associations divided by size-fractions: association within the
nano size fraction (n), within the pico size fraction (p), and between these two size fractions (np). The third column shows all microbial edges
connected to an environmental parameter: temperature (Tem), day length (day), chlorophyll (Chl), inorganic nutrients NO3

− (NO3), SiO2 (Si), and
NO2

− (NO2). The last column shows the number of edges divided in how many triplets they have been found ranging from no triplets (0) to six
triplets. The first two rows display the number of microbial associations of the BBMO network before applying EnDED. Positive associations are
indicated with black, negative associations with red. The last two rows indicate in blue the fraction of environmentally driven edges among the
positive (3rd row) and negative (4th row) microbial associations. B The left network shows in black the positive and in red the negative
associations. The right network shows the number of triplets a microbial edge is in ranging from one (green) to six (orange), and no triplet
(black). The middle network shows in blue the environmentally driven associations that were detected by the intersection combination of the
four methods sign pattern, overlap, interaction information, and data processing inequality
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• Blanes Bay Microbial Observatory (BBMO) data: 
Mediterranean Sea sampled monthly from Jan 2004 
to Dec 2013

• Environmental factors measured
• 18S & 16S V4 region sequenced
• Network constructed with eLSA
• EnDED (combi) removed 8.3% of the edges 

random permutation test if the theoretical p values for
the comparison are below 0.05; the number of iterations
was 2000. Although we are aware of time-delayed inter-
actions and that eLSA [11, 12] could account for them,
we considered our sampling interval as too large (1
month) for inferring time-delayed associations with a
solid ecological basis. Thus, in our study, we focused on
contemporary interactions between co-occurring mi-
crobes. For the BBMO dataset, the Bonferroni false dis-
covery rate, q, was calculated for all edges from the p
values using the R function p.adjust [40]. Lastly, we used
a significance threshold for the p and q value of 0.001 as
suggested in other works [22].

Intersection combination of EnDED—environmentally
driven edge detection methods
EnDED includes four methods: SP, OL, II, DPI (de-
scribed below), and their intersection combination (an
ensemble approach of the four methods). We applied
these methods to find environmentally driven associa-
tions of microorganisms that were within an environ-
mental triplet, as in [23]. An environmental triplet is a
special case of a closed triplet where one of the nodes
corresponds to an environmental factor and the other
two nodes correspond to microorganisms. We define the
closed triplets, where there is an edge between each pair
of three nodes, as T = {v,w, f} where v and w are two

microorganisms, and f is an environmental component
(see Fig. 3).
For the intersection combination, all four individual

methods must converge to the same solution, i.e., if
all methods classify the microbial edge as environ-
mentally driven, the edge is removed from the net-
work. If a microbial association is within several
environmental triplets, at least one of them must in-
dicate the association as environmentally driven. In
sum, the intersection combination retains an associ-
ation in the network if no triplet classifies the associ-
ation as environmentally driven.

Sign pattern
The SP method [23] filters environmentally driven
edges from a network in which a positive association
score indicates co-occurrence, and a negative associ-
ation score indicates mutual exclusion. Let svw be the
sign of the association score of the association be-
tween v and w (i.e., svw = + or svw = −). A closed trip-
let T has eight SP combinations that group into two
sets (see Fig. 3). If the product of the three associ-
ation scores is positive, then the SP suggests that the
edge between the two microorganisms is environmen-
tally driven. Otherwise, if the product of the three as-
sociation scores is negative, SP does not suggest that
the association is environmentally driven.

Fig. 3 EnDED methods overview. EnDED is an implementation of four methods aiming to determine whether an edge between two
microorganisms is indirect through the action of an environmental factor. The four methods are sign pattern, overlap, interaction information,
and data processing inequality (see “Methods” section). Each method can be used individually or in combination. Here, we show the intersection
combination approach, i.e., only if all methods classify an edge as indirect, it is removed from the network. Otherwise, the edge is classified as not
indirect and kept in the network
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Manta internals

multiplying the weights of the edges connecting the two nodes (Fig. 1A). If the nodes
are connected only by positively weighted edges, the indirect effect is also positive. In
contrast, if the path between the two nodes contains a single negatively weighted
edge, the indirect effect is negative; hence, clusters found by manta reflect the principle
“the enemy of my enemy is my friend.” Depending on the structure of the network
(Fig. 1A and B), manta uses two alternative strategies to generate scoring matrices
(Fig. 1C and D). See Materials and Methods for a detailed explanation and the
pseudocode describing the algorithm.

After the scoring matrix is generated, it can be clustered with an agglomerative
clustering approach (Fig. 1E). The optimal cluster number is identified with the sparsity
score (equation 1 in Materials and Methods), which is calculated from intracluster to
intercluster weighted edges. The network can then be rewired and the procedure
repeated to generate robustness scores (Fig. 1F). This approach generates biologically
relevant clusters while ignoring nodes that cannot be confidently assigned to a cluster.

manta equals or outperforms other algorithms on synthetic data sets. To
evaluate the performance of manta in comparison to alternative methods, we gener-
ated synthetic data sets using two different approaches. One is based on the gener-

FIG 1 manta pipeline. (A) Toy graph with two clusters separated by negatively weighted edges. The
effect of node x on node z can be estimated by taking the product of edges 1,2 and 2,5. (B) Toy graph
with a single negatively weighted edge in the left cluster. (C) Scoring matrix for panel A across six
iterations. Black and white values reflect !1 and 1, respectively. After six iterations, the scoring matrix
reaches convergence. (D) Scoring matrix for panel B across nine iterations. Unlike panel C, this matrix
reaches a flip-flop state, where the scoring matrix alternates between the configurations shown in
iterations 6, 7, 8, and 9. A few values in the matrix reach !1 or 1, while all other values oscillate near 0.
(E) manta uses agglomerative clustering on the scoring matrix to assign each node to a cluster. For
flip-flopping matrices, the scoring matrix is generated from subsets of the complete network. (F) A
fraction of the original network is rewired to generate permuted cluster assignments with identical
degree distributions. The robustness of cluster assignments can then be estimated by comparing the
Jaccard similarities of cluster memberships cluster-wise or node-wise.

A Clustering Algorithm for Weighted Networks
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A, C) Balanced graphs: Multiplication 
and transformation (retaining signs) of 
weighted adjacency matrix MCL-style 
until convergence (scoring matrix)

B, D) Unbalanced graphs: no 
convergence (flip-flop state)

Trick: use sub-sets of the 
network to generate scoring 
matrix. For balanced subsets, 
follow procedure for balanced 
graphs. For unbalanced 
subsets, carry out only one 
iteration. When merging, only 
use nodes with signs consistent 
across most subsets.

=> Scoring matrix
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• Clusters derived from scoring matrix through agglomerative 
clustering with Euclidean distances

• Optimal cluster number determined with sparsity score S

Manta internals

S = 1/E*(number of negative edges not 
in clusters + number of positive edges 
in clusters – number of negative edges 
in clusters – number of positive edges 
not in clusters)
E: total edge number
S ranges from -1 to 1, with -1 being the 
worst sore
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Mako’s data scheme 
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• Weak cluster assignments:
– Find nodes that fluctuate strongly in flip-flop 

iterations: oscillators (some diagonal values of 
scoring matrix)

– Compute weight of shortest path from each 
node to closest oscillator

– Negative weight or weight below user-defined 
threshold: node has a weak cluster assignment

• Treatment of small clusters: clusters in size below threshold 
are removed from scoring matrix and cluster membership of 
their nodes is assigned based on average shortest path 
weight to cluster members

Manta internals
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