
individual. We detected hedgehogs in every individual who was
sampled on multiple occasions and in ∼80% of individuals sampled
only once. The most exposed surface sampled, the tooth surface on
the buccal side, yielded hedgehogs; so did plaque from the
gingival margin. Some samples contained multiple hedgehog
structures adjacent to one another (Fig. S4 ). Other samples lacked
hedgehogs but contained other consortia. For example, clusters of
Lautropia formed the center of a structure that also contained
Streptococcus, Haemophilus/Aggregatibacter, and Veillonella and was
reminiscent of a cauliflower (Fig. 8). Most samples contained a
mixture of hedgehogs and other consortia. Because of this extensive
variability and the time-intensive nature of spectral imaging analysis,
higher-throughput imaging methods will be required to conduct a
comprehensive analysis of spatial, temporal, and individual variation
in the abundance of hedgehogs and other consortia in plaque.
In summary, we have discovered distinctive, multigenus con-

sortia in dental plaque, with each taxon localized in a precise and
well-defined spatial zone. The precision and reproducibility of

this spatial organization indicate that micron-scale organization
reflects a finely tuned interaction among the cells comprising
oral microbial communities.

Discussion
Organization of Hedgehog Structures. The spatial organization of
hedgehog consortia provides a framework for understanding the
community structure and metabolism of the plaque microbiome.
A modest number of abundant taxa makes up the clear majority
of the cells in the structure, and these taxa are arranged in an
organized spatial framework, within which each microbe oc-
cupies a characteristic position. Based on the literature, we in-
terpret the metabolic, adhesive, and environmental drivers of
plaque spatial structure as diagrammed in Fig. 9.
The radial organization of hedgehogs, built on a framework of

Corynebacterium, suggests that Corynebacterium is the founda-
tion taxon of the consortium: it structures the environment,
thereby creating habitat for other organisms and nucleating a
plaque-characteristic consortium. Consistent with this view, our
habitat analysis showed that Corynebacterium was the genus most
characteristic of plaque. The physical environment of plaque is
distinctive from all other oral habitats because of the tooth
surface itself: the tooth represents a solid surface permanently
exposed in the mouth, whereas all other oral surfaces are cov-
ered in epithelial cell layers that frequently shed. Our model
suggests that Corynebacterium proliferates in plaque and struc-
tures the plaque environment because it has adopted a strategy
of filamentous growth outward from the tooth, anchored in a
base cemented to that permanent, exposed surface. By embed-
ding itself in a biofilm matrix attached to the tooth, Co-
rynebacterium could anchor the entire structure and create a
protected reservoir from which it can regrow after its removal by
abrasion or oral hygiene procedures, thus accounting for how

A

B

C

Fig. 4. Complex corncob structures in SUPP. (A and B ) Clusters of corncobs at
the perimeter of hedgehog structures. (A) Whole mount of plaque hybridized
with probes for Corynebacterium, Fusobacterium, Streptococcus, Porphyr-
omonas, and Haemophilus/Aggregatibacter. (B ) Methacrylate-embedded section
hybridized with probes for Corynebacterium, Streptococcus, Porphyromonas,
and Haemophilus/Aggregatibacter. (C) Gallery of representative images showing
types of corncobs frequently observed. (Scale bar: C, 5 μm.)

Fig. 5. Filaments and rods of several genera intermingle at micron scales in
an annulus of the hedgehog structure. The two images shown are from
methacrylate-embedded, sectioned plaque from two different donors. Both
samples were hybridized with probes for Corynebacterium, Fusobacterium,
Leptotrichia, Streptococcus, Porphyromonas, Haemophilus/Aggregatibacter,
and Neisseriaceae; the probe set in Upper also included a probe for Capno-
cytophaga.

E796 | www.pnas.org/cgi/doi/10.1073/pnas.1522149113 Mark Welch et al.
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Growing microorganisms

Bioreactor

• Controlled atmosphere
• Controlled temperature
• Well-mixed liquid
• Closed: batch 
• In- and outflow: chemostat

2

Microbial growth: increasing 
turbidity (optical density = 
OD) in a photometer
Estimation of the optical density using McFarland 
turbidity standards without a photometer
The method used to estimate the turbidity of a microbial 
sample if no photometer is present is the McFarland turbid-
ity standard. The standard sets are liquid samples in a glass 
or plastic tube that refer to an optical density (mostly 0.5, 
1.0, 2.0, 3.0 and 4.0). The turbidity is reached either by 
polystyrene microparticles in a buffer, or barium chloride 
with sulfuric acid. There are many different manufacturers 
of standards in the market.
The method of estimation relies on visual rating. Each of the 
liquid standard solutions is held next to the microbial culture 
to assess the turbidity of the microbial culture. This method 
is not very precise and depends strongly on the researcher 
doing it.

Determination of measurement differences in different 
photometers 
To identify the variations of optical density measurements 
at 600 nm in different photometers, an experiment was 
performed. The most common laboratory microorganism 
Escherichia coli was used to measure a growth curve. It is 
referred to as 1.5x108 viable cells per mL at an absorbance 
of 0.5, measured at a wavelength of 600 nm in a photometer. 
The factor 1.5x108 is preprogrammed in some photometers 
so that these devices display the cell number directly after 
measuring the absorbance. This factor was determined with 
E. coli DH5α. Therefore the microorganism was grown in 
LB medium overnight shaking at 180 rpm at 37 °C. 100 µL 
of this culture were used to inoculate 10 mL of fresh LB-
medium in an Erlen-meyer flask. The culture was incubated 
shaking at 180 rpm and 37 °C for 8 h. A standard curve for 
E. coli DH5α has been established measuring the OD600 
every 60 min for 8 h in 3 different photometers.

Dilutions of the microbial culture using LB medium had to 
be performed as soon as the absorbance value measured in 
the undiluted culture reached 0.8. The dilution factor was 
adapted according to the increasing growth of bacteria over 
time from 1:2 to 1:8. The measured absorbance value was 
multiplied with the dilution factor (e.g. OD600 0.61 * dilution 
factor 4 = OD600 cal. 2.44). All data points were entered in 
a graph to visualize the growth curve of E. coli DH5α (Fig. 2). 
Each sample was additionally plated out on agar plates  
to count the viable colony forming units (CFU). Thereby the 
reference value of 1.5x108 CFU per mL at an absorbance 
value of 0.5 could be confirmed (data not shown).
The experimental data shows that each photometer gives 
a different absorbance value for the measured sample, even 
though the sample was exactly the same. The varying results 
become obvious after 2 h of bacterial growth and deviation 
increases over time when more bacterial cells are present in 
the sample. These results show that exactly the same sample 
can lead to different optical density results in different pho-
tometers. Even in low absorbance value ranges between 
0.2 to 1.0 differences are already visible.

WHITE PAPER I No. 28 I Page 2

Figure 1: Typical set up of an absorbance measurement in a photometer. 
The incoming light intensity is reduced by absorption of sample molecules 
and this reduced light intensity is measured at the detector. By comparing 
the incoming and outgoing amount of light the concentration of a sample is 
calculated.

Figure 2: Growth curves of E. coli DH5α grown in LB medium for 8 h shaking at 
180 rpm at 37 °C. Every 60 min the OD600 of the same sample was measured 
in three different photometers showing that the results differ when compar-
ing different instruments. The samples were diluted using LB medium when 
an absorbance value of 0.8 was reached to guarantee accurate measuring at 
600 nm. The dilution factor was used to multiply with the measured result for 
absorbance value determination.

Competitor A

Competitor B

Eppendorf



Microbial growth curve

Figure taken from Jacques Monod: “The Growth of Bacterial 
Cultures”, Annual Rev. Microbiology 1949, 371-394.
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1: Lag phase
2: Acceleration phase

3: Exponential 
(Log) phase

4: Retardation phase
5: Stationary phase

6: Phase of 
decline (death)

3

In batch (nutrient 
is depleted)



Logistic equation

• In batch, bacteria enter stationary phase when they 
run out of food

• The less food they have, the slower they grow 

• Bacterial biomass is constrained (carrying capacity)

• Logistic equation describes this behaviour:

4

!"
!#=r

$%"
$ "

x: Biomass
K: Carrying capacity
r: (Intrinsic) growth rate 

!"
!#=r 1 − "

$ "



Logistic growth

5
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Carrying capacity

S-shaped (sigmoid) curve



Monod kinetics

• Carrying capacity depends on available 
nutrients
• Monod equation describes how growth 

depends on rate-limiting nutrient
• Monod equation also assumes that with more 

and more substrate bacteria benefit less and 
less (saturation)

6
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S: Substrate concentration
x: Biomass
KS: Saturation/Monod constant
!max: maximum specific growth rate 



Monod kinetics - examples
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Example from Monod 1949: Growth 
rate change of E. coli with glucose
concentration. Increase in growth 
rate slows down with increasing 
substrate concentration: saturation 
kinetics

Example from Feng et al. 2012: Biomass 
change in Shewanella oneidensis in 
batch modeled with Monod equation. 
Decreasing substrate (lactate) slows 
down biomass increase non-linearly (S 
changes as a function of x). 

Figure 2. Monod model for growth kinetics. The green dots are the measurements, and the blue lines are the simulated growth by the
empirical Monod model.
doi:10.1371/journal.pcbi.1002376.g002

Table 1. Parameters estimated in the empirical Monod model.

Symbols Notation Unit Value

mmax,L Maximum specific growth rate using lactate h21 0.5760.11

mmax,P Maximum specific growth rate using pyruvate h21 0.1460.02

mmax,A Maximum specific growth rate using acetate h21 0.1360.02

YX/L Apparent biomass yield coefficient from lactate g DCW/mol lactate 17.061.3

YX/P Apparent biomass yield coefficient from pyruvate g DCW/mol pyruvate 16.761.3

YX/A Apparent biomass yield coefficient from acetate g DCW/mol actate 11.164.7

Ks,l Monod lactate saturation constant mM 19.467.9

Ks,p Monod pyruvate saturation constant mM 19.468.1

Ks,a Monod acetate saturation constant mM 10.162.2

kal Acetate production coefficient from lactate LN (hNg DCW)21 0.7160.06

kpl Pyruvate production coefficient from lactate LN (hNg DCW)21 0.4560.04

kap Acetate production coefficient from pyruvate LN (hNg DCW)21 0.9460.08

ke Endogenous metabolism rate constant h21 0.01360.016

tL Lag time in growth h 7.1060.01

doi:10.1371/journal.pcbi.1002376.t001

dFBA of Dynamic MR-1 Metabolism
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More than one microbial species…
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Microorganisms interact: competition

9

Interference competition

Passive competition

(Direct)

(Indirect)



bacteriostatic or bactericidal activity, which limit or prevent
growth of their competitors (Fig. 1).6,7 Some of these anti-
bacterial compounds act against a specific target organism,
others are rather broad-spectrum antibiotics against a wide
range of competing species.8 These interactions have led to
the discovery of many important classes of antibiotics and
microbial natural products continue to be of highest interest
for drug development against antibiotic resistant strains.9,10 In
contrast, indirect competition (or exploitative competition)
does not target viability of a competitor but involves the battle
over limited resources.6,7 This can be achieved by rapid coloni-
zation strategies, efficient exploitation of key resources, and
mechanisms to secure and defend public goods from scav-
engers. A prime example for a scarce resource in the microbial
world is ferric iron, one of the most important factors limiting
bacterial growth.11 In consequence, bacteria have developed
extracellular high affinity iron-chelating molecules called side-

rophores that are secreted and the corresponding iron com-
plexes are taken up via specialized receptors.11 As secreted
metabolites, siderophores frequently form public goods, which
also can be preyed on by other species – a behaviour known as
siderophore piracy.12 Hereby the scavenging organism saves
the costs of siderophore biosynthesis and imposes them on
the other species, which may constitute a mixed type of com-
petition (Fig. 1). These different competitive behaviours have
driven the evolution of bacterial metabolites that modulate
interspecies interactions.

Frequently, one organism not only produces a single metab-
olite of a specific class but a set of different, yet closely related
structures.13,14 This diversity has been traditionally linked to
promiscuity in biosynthesis with little or no importance for
biological activity. However, increasing evidence suggests that
even closely related metabolites may have distinct activities
and possibly also different biological roles. In this perspective
article, we will discuss two examples of our recent work on
how the diversity of bacterial metabolites contributes to the
interspecies competition of microorganisms. We will hereby
present examples of small molecule metabolite driven species–
species interactions in different ecological niches and specu-
late on the effects of structural variations of metabolites on
direct and indirect competition.

Results and discussion
Antibiotic 4-quinolone-N-oxides from Pseudomonas
aeruginosa

The opportunistic human pathogen Pseudomonas aeruginosa
coordinates behaviours that aid its infectious lifestyle in
dependence of population density by several hierarchical
quorum sensing signalling systems.15 One of them is the
Pseudomonas quinolone signal quorum sensing system,
which has major control over virulence and iron uptake and
uses 4-quinolones as signalling molecules.16 These signals
include 2-heptyl-4-hydroxyquinoline (HHQ) and Pseudomonas
quinolone signal (PQS) which are the main regulators of the
PQS-quorum sensing system in P. aeruginosa (Fig. 2).17 HHQ
and PQS are responsible for the production of virulence
factors like pyocyanin, rhamnolipids, cyanide, and proteins
like lectins and elastase, and affect biofilm production and
swarming motility.15,16 Therefore, HHQ and PQS are key
factors in the process of colonization of niches and defence
against the host immune system. In addition to HHQ and
PQS, over 50 different natural 4-quinolone derivatives have
been detected in cultures of P. aeruginosa.18 This structural
diversity is likely produced by substrate promiscuity of the
enzyme complex PqsBC, which is involved in the biosynthesis
of all 4-quinolones in P. aeruginosa.19 This heterodimeric
enzyme catalyzes the condensation of activated fatty acids with
2′-aminobenzoylacetate (2-ABA) or 2′-hydroxylaminobenzoyl-
acetate (2-HABA) leading after cyclization to the corresponding
4-quinolones (Fig. 2).19–21 Many of the resulting metabolites
are derivatives of HHQ and PQS and simply differ in length

Thomas Böttcher

Thomas Böttcher studied
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the Ludwig-Maximilian
University of Munich, where he
obtained his PhD in 2009 under
guidance of Stephan A. Sieber.
After a short research stay at the
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company AVIRU GmbH for devel-
opment of a anti-virulence drug
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lab of Jon Clardy at Harvard
Medical School with a

Leopoldina postdoctoral fellowship. Since 2014 he is an indepen-
dent Emmy Noether research group leader at the University of
Konstanz. His group is interested in bacterial metabolite inter-
actions and the chemical modulation of bacterial behaviour.

Fig. 1 Types of bacterial competition behaviour discussed in this
article.
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Microorganisms interact: competition

Example

10

Passive competition: 
Pseudomonas aeruginosa
excrete siderophores to 
transport ferric iron inside the 
cell, so competitors cannot 
access it. 

Interference competition: 
Pseudomonas aeruginosa 
produces antibiotics to 
compete with Staphylococcus 
aureus in the cystic fibrosis 
lung.

Image taken from Szamosvari et al. Organic & Biomolecular Chemistry 16, 
2814 (2018).

Ferric iron

Interference competition

Passive competition



Microorganisms interact: cross-feeding

11

Commensalism

Mutualism



Microorganisms interact: cross-feeding

Example

12

Marine worm 
relies entirely on 
symbionts for 
feeding (it lacks 
mouth, gut and 
anus)

Sulphate reducer, 
consumes SO42- and
produces HS-

Sulphate oxidizer, 
consumes HS- and
produces SO42-

Image taken from Woyke et al. Nature 443, 950-955 (2006).

Image source: wikipedia



Microorganisms interact: endosymbiosis

Endosymbiosis

13

~90% of all OTUs and reads, respectively (Fig.
3C). Among these, the only permanently photo-
trophic taxa were diatoms (Fig. 4A) and about
one-third of dinoflagellates (Fig. 4, B to F), to-
gether comprising ~15 and ~13% of hyperdiverse
OTUs and reads, respectively (30). Most hyper-
diverse photic-zone plankton belonged to three
supergroups—the Alveolata, Rhizaria, and Excavata
—about which we have limited biological or
ecological information. The Alveolata, which con-
sistmostly of parasitic [marine alveolates (MALVs)]
(Fig. 4F) and phagotrophic (ciliates and most
dinoflagellates) taxa, were by far themost diverse
supergroup, comprising ~42% of all assignable
OTUs. The Rhizaria are a group of amoeboid he-
terotrophic protists with active pseudopods dis-
playing a broad spectrum of ecological behavior,
from phagotrophy to parasitism and mutualism
(symbioses) (31). Rhizarian diversity peaked in

the Retaria (Fig. 4, C and D) a subgroup includ-
ing giant protists that build complex skeletons of
silicate (Polycystinea), strontium sulfate (Acan-
tharia) (Fig. 4C), or calcium carbonate (Forami-
nifera) and thus comprise key microfossils for
paleoceanography. Unsuspected rDNA diversity
was recorded within the Collodaria (5636 OTUs),
polycystines that are mostly colonial, poorly
silicified, or naked and live in obligatory symbi-
osis with photosynthetic dinoflagellates (Fig. 4D)
(32, 33). Arguably, the most surprising compo-
nent of novel biodiversity was the >12,300 OTUs
related to reference sequences of diplonemids,
an excavate lineage that has only two described
genera of flagellate grazers, one of which para-
sitizes diatoms and crustaceans (34, 35). Their
ribosomal diversity was not only much higher
than that observed in classical plankton groups
such as foraminifers, ciliates, or diatoms (50-fold,

6-fold, and 3.8-fold higher, respectively) but was
also far from richness saturation (Fig. 3E). Eu-
karyotic rDNA diversity peaked especially in the
few lineages that extend across larger size frac-
tions (i.e., metazoans, rhizarians, dinoflagellates,
ciliates, diatoms) (Fig. 3E). Larger cells or colonies
not only provide protection against predation via
size-mediated avoidance and/or construction
of composite skeletons but also provide support
for complex and coevolving relationships with of-
ten specialized parasites ormutualistic symbionts.
Beyond this hyperdiverse, largely heterotrophic

eukaryotic majority, our data set also highlighted
the phylogenetic diversity of poorly known pha-
gotrophic (e.g., 413 OTUs of Katablepharidophyta,
240 OTUs of Telonemia), osmotrophic (e.g., 410
OTUs of Ascomycota, 322 OTUs of Labyrinthu-
lea), and parasitic (e.g., 384 OTUs of gregarine
apicomplexans, 160 OTUs of Ascetosporea, 68

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1261605-5

Fig. 4. Illustration of key eukaryotic plankton lineages. (A) Stramenopila;
a phototrophic diatom Chaetoceros bulbosus, with its chloroplasts in red
(arrowhead). Scale bar, 10 mm. (B) Alveolata; a heterotrophic dinoflagellate
Dinophysis caudata harboring kleptoplasts [in red (arrowhead)]. Scale bar,
20 mm (75). (C) Rhizaria; an acantharian Lithoptera sp. with endosymbiotic
haptophyte cells from the genus Phaeocystis [in red (arrowhead)]. Scale bar,
50 mm (41). (D) Rhizaria; inside a colonial network of Collodaria, a cell sur-
rounded by several captive dinoflagellate symbionts of the genus Brandtodi-
nium (arrowhead). Scale bar, 50 mm (33). (E) Opisthokonta; a copepod whose
gut is colonized by the parasitic dinoflagellate Blastodinium [red area shows
nuclei (arrowhead)]. Scale bar, 100 mm (51). (F) Alveolata; a cross-sectioned,

dinoflagellate cell infected by the parasitoid alveolate Amoebophrya (MALV-II).
Each blue spot (arrowhead) is the nucleus of future free-living dinospores;
their flagella are visible in green inside the mastigocoel cavity (arrow). Scale
bar, 5 mm. The cellular membranes were stained with DiOC6 (green); DNA
and nuclei were stained with Hoechst (blue) [the dinoflagellate theca in (B)
was also stained by this dye]. Chlorophyll autofluorescence is shown in red
[except for in (E)]. An unspecific fluorescent painting of the cell surface (light
blue) was used to reveal cell shape for (A) and (F). All specimens come from
Tara Oceans samples preserved for confocal laser scanning fluorescent
microscopy. Images were three-dimensionally reconstructed with Imaris
(Bitplane).

Image taken from de Vargas et al. Science 348, 1261605 (2015).

Parasitism

Host: Diatom Host: Dinoflagellate

Host: Copepod Host: Dinoflagellate

Host: Acantharian

Host: Collodaria

Parasite: Dinoflagellate Parasite: MALV II taxon

Symbiont: KleptoplastSymbiont: Chloroplast Symbiont: Phaeocystis

Symbiont: Dinoflagellate



Microorganisms interact: biofilms

“Corncob” structures 
in dental plaque with 
Corynebacteria
filaments at the base 
and Streptococcus
cocci on top

individual. We detected hedgehogs in every individual who was
sampled on multiple occasions and in ∼80% of individuals sampled
only once. The most exposed surface sampled, the tooth surface on
the buccal side, yielded hedgehogs; so did plaque from the
gingival margin. Some samples contained multiple hedgehog
structures adjacent to one another (Fig. S4 ). Other samples lacked
hedgehogs but contained other consortia. For example, clusters of
Lautropia formed the center of a structure that also contained
Streptococcus, Haemophilus/Aggregatibacter, and Veillonella and was
reminiscent of a cauliflower (Fig. 8). Most samples contained a
mixture of hedgehogs and other consortia. Because of this extensive
variability and the time-intensive nature of spectral imaging analysis,
higher-throughput imaging methods will be required to conduct a
comprehensive analysis of spatial, temporal, and individual variation
in the abundance of hedgehogs and other consortia in plaque.
In summary, we have discovered distinctive, multigenus con-

sortia in dental plaque, with each taxon localized in a precise and
well-defined spatial zone. The precision and reproducibility of

this spatial organization indicate that micron-scale organization
reflects a finely tuned interaction among the cells comprising
oral microbial communities.

Discussion
Organization of Hedgehog Structures. The spatial organization of
hedgehog consortia provides a framework for understanding the
community structure and metabolism of the plaque microbiome.
A modest number of abundant taxa makes up the clear majority
of the cells in the structure, and these taxa are arranged in an
organized spatial framework, within which each microbe oc-
cupies a characteristic position. Based on the literature, we in-
terpret the metabolic, adhesive, and environmental drivers of
plaque spatial structure as diagrammed in Fig. 9.
The radial organization of hedgehogs, built on a framework of

Corynebacterium, suggests that Corynebacterium is the founda-
tion taxon of the consortium: it structures the environment,
thereby creating habitat for other organisms and nucleating a
plaque-characteristic consortium. Consistent with this view, our
habitat analysis showed that Corynebacterium was the genus most
characteristic of plaque. The physical environment of plaque is
distinctive from all other oral habitats because of the tooth
surface itself: the tooth represents a solid surface permanently
exposed in the mouth, whereas all other oral surfaces are cov-
ered in epithelial cell layers that frequently shed. Our model
suggests that Corynebacterium proliferates in plaque and struc-
tures the plaque environment because it has adopted a strategy
of filamentous growth outward from the tooth, anchored in a
base cemented to that permanent, exposed surface. By embed-
ding itself in a biofilm matrix attached to the tooth, Co-
rynebacterium could anchor the entire structure and create a
protected reservoir from which it can regrow after its removal by
abrasion or oral hygiene procedures, thus accounting for how

A

B

C

Fig. 4. Complex corncob structures in SUPP. (A and B ) Clusters of corncobs at
the perimeter of hedgehog structures. (A) Whole mount of plaque hybridized
with probes for Corynebacterium, Fusobacterium, Streptococcus, Porphyr-
omonas, and Haemophilus/Aggregatibacter. (B ) Methacrylate-embedded section
hybridized with probes for Corynebacterium, Streptococcus, Porphyromonas,
and Haemophilus/Aggregatibacter. (C) Gallery of representative images showing
types of corncobs frequently observed. (Scale bar: C, 5 μm.)

Fig. 5. Filaments and rods of several genera intermingle at micron scales in
an annulus of the hedgehog structure. The two images shown are from
methacrylate-embedded, sectioned plaque from two different donors. Both
samples were hybridized with probes for Corynebacterium, Fusobacterium,
Leptotrichia, Streptococcus, Porphyromonas, Haemophilus/Aggregatibacter,
and Neisseriaceae; the probe set in Upper also included a probe for Capno-
cytophaga.

E796 | www.pnas.org/cgi/doi/10.1073/pnas.1522149113 Mark Welch et al.
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individual. We detected hedgehogs in every individual who was
sampled on multiple occasions and in ∼80% of individuals sampled
only once. The most exposed surface sampled, the tooth surface on
the buccal side, yielded hedgehogs; so did plaque from the
gingival margin. Some samples contained multiple hedgehog
structures adjacent to one another (Fig. S4 ). Other samples lacked
hedgehogs but contained other consortia. For example, clusters of
Lautropia formed the center of a structure that also contained
Streptococcus, Haemophilus/Aggregatibacter, and Veillonella and was
reminiscent of a cauliflower (Fig. 8). Most samples contained a
mixture of hedgehogs and other consortia. Because of this extensive
variability and the time-intensive nature of spectral imaging analysis,
higher-throughput imaging methods will be required to conduct a
comprehensive analysis of spatial, temporal, and individual variation
in the abundance of hedgehogs and other consortia in plaque.
In summary, we have discovered distinctive, multigenus con-

sortia in dental plaque, with each taxon localized in a precise and
well-defined spatial zone. The precision and reproducibility of

this spatial organization indicate that micron-scale organization
reflects a finely tuned interaction among the cells comprising
oral microbial communities.

Discussion
Organization of Hedgehog Structures. The spatial organization of
hedgehog consortia provides a framework for understanding the
community structure and metabolism of the plaque microbiome.
A modest number of abundant taxa makes up the clear majority
of the cells in the structure, and these taxa are arranged in an
organized spatial framework, within which each microbe oc-
cupies a characteristic position. Based on the literature, we in-
terpret the metabolic, adhesive, and environmental drivers of
plaque spatial structure as diagrammed in Fig. 9.
The radial organization of hedgehogs, built on a framework of

Corynebacterium, suggests that Corynebacterium is the founda-
tion taxon of the consortium: it structures the environment,
thereby creating habitat for other organisms and nucleating a
plaque-characteristic consortium. Consistent with this view, our
habitat analysis showed that Corynebacterium was the genus most
characteristic of plaque. The physical environment of plaque is
distinctive from all other oral habitats because of the tooth
surface itself: the tooth represents a solid surface permanently
exposed in the mouth, whereas all other oral surfaces are cov-
ered in epithelial cell layers that frequently shed. Our model
suggests that Corynebacterium proliferates in plaque and struc-
tures the plaque environment because it has adopted a strategy
of filamentous growth outward from the tooth, anchored in a
base cemented to that permanent, exposed surface. By embed-
ding itself in a biofilm matrix attached to the tooth, Co-
rynebacterium could anchor the entire structure and create a
protected reservoir from which it can regrow after its removal by
abrasion or oral hygiene procedures, thus accounting for how

A

B

C

Fig. 4. Complex corncob structures in SUPP. (A and B ) Clusters of corncobs at
the perimeter of hedgehog structures. (A) Whole mount of plaque hybridized
with probes for Corynebacterium, Fusobacterium, Streptococcus, Porphyr-
omonas, and Haemophilus/Aggregatibacter. (B ) Methacrylate-embedded section
hybridized with probes for Corynebacterium, Streptococcus, Porphyromonas,
and Haemophilus/Aggregatibacter. (C) Gallery of representative images showing
types of corncobs frequently observed. (Scale bar: C, 5 μm.)

Fig. 5. Filaments and rods of several genera intermingle at micron scales in
an annulus of the hedgehog structure. The two images shown are from
methacrylate-embedded, sectioned plaque from two different donors. Both
samples were hybridized with probes for Corynebacterium, Fusobacterium,
Leptotrichia, Streptococcus, Porphyromonas, Haemophilus/Aggregatibacter,
and Neisseriaceae; the probe set in Upper also included a probe for Capno-
cytophaga.

E796 | www.pnas.org/cgi/doi/10.1073/pnas.1522149113 Mark Welch et al.
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Image taken from de Welch et al. PNAS, E791-E800 (2016). 14

Oxygen and nutrient poor (Tooth)

Oxygen and nutrient rich (Saliva)
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Adapted from Lidicker, 
W.Z. BioScience 29, 475-
477 (1979).

Classifying microbial interactions

Predation & 
parasitism = 
exploitation



Factors shaping microbial interactions

Specificity How many potential and 
actual interaction partners 
are there?

Space Particular spatial 
arrangement or physical 
contact required?

Environment Do physical or chemical 
properties of the 
environment influence the 
interaction?

Time Does interaction depend on 
a circadian cycle or a 
particular growth phase? 

Modified from: Pacheco & Segrè FEMS 
Microbiology Letters 366, fnz125 (2019). 16



Investigating microbial interactions

• Optical density does not differentiate 
between different species
• Challenge: We need to count microbial 

species separately in mixtures

17



Counting microbes: CFU CFU = colony-
forming units

Source: 
http://loretocollegebiolog
y.weebly.com/measuring-
bacterial-growth.html#

18

§ Strains need to be 
cultivable

§ Microbial species 
can only be 
counted 
separately in case 
morphology differs

Dilution series

http://loretocollegebiology.weebly.com/measuring-bacterial-growth.html


Counting microbes: quantitative PCR

• TaqMan: qPCR with species-
specific primers and probes
• Quencher suppresses 

fluorescence 
• Primer binds species-specific site
• Taq polymerase extends primer 

until it reaches probe
• Taqman polymerase cleaves 

probe, releasing fluorescence

19Source: Wikipedia

Microbial DNA



Counting microbes: FISH

20

individual. We detected hedgehogs in every individual who was
sampled on multiple occasions and in ∼80% of individuals sampled
only once. The most exposed surface sampled, the tooth surface on
the buccal side, yielded hedgehogs; so did plaque from the
gingival margin. Some samples contained multiple hedgehog
structures adjacent to one another (Fig. S4 ). Other samples lacked
hedgehogs but contained other consortia. For example, clusters of
Lautropia formed the center of a structure that also contained
Streptococcus, Haemophilus/Aggregatibacter, and Veillonella and was
reminiscent of a cauliflower (Fig. 8). Most samples contained a
mixture of hedgehogs and other consortia. Because of this extensive
variability and the time-intensive nature of spectral imaging analysis,
higher-throughput imaging methods will be required to conduct a
comprehensive analysis of spatial, temporal, and individual variation
in the abundance of hedgehogs and other consortia in plaque.
In summary, we have discovered distinctive, multigenus con-

sortia in dental plaque, with each taxon localized in a precise and
well-defined spatial zone. The precision and reproducibility of

this spatial organization indicate that micron-scale organization
reflects a finely tuned interaction among the cells comprising
oral microbial communities.

Discussion
Organization of Hedgehog Structures. The spatial organization of
hedgehog consortia provides a framework for understanding the
community structure and metabolism of the plaque microbiome.
A modest number of abundant taxa makes up the clear majority
of the cells in the structure, and these taxa are arranged in an
organized spatial framework, within which each microbe oc-
cupies a characteristic position. Based on the literature, we in-
terpret the metabolic, adhesive, and environmental drivers of
plaque spatial structure as diagrammed in Fig. 9.
The radial organization of hedgehogs, built on a framework of

Corynebacterium, suggests that Corynebacterium is the founda-
tion taxon of the consortium: it structures the environment,
thereby creating habitat for other organisms and nucleating a
plaque-characteristic consortium. Consistent with this view, our
habitat analysis showed that Corynebacterium was the genus most
characteristic of plaque. The physical environment of plaque is
distinctive from all other oral habitats because of the tooth
surface itself: the tooth represents a solid surface permanently
exposed in the mouth, whereas all other oral surfaces are cov-
ered in epithelial cell layers that frequently shed. Our model
suggests that Corynebacterium proliferates in plaque and struc-
tures the plaque environment because it has adopted a strategy
of filamentous growth outward from the tooth, anchored in a
base cemented to that permanent, exposed surface. By embed-
ding itself in a biofilm matrix attached to the tooth, Co-
rynebacterium could anchor the entire structure and create a
protected reservoir from which it can regrow after its removal by
abrasion or oral hygiene procedures, thus accounting for how

A

B

C

Fig. 4. Complex corncob structures in SUPP. (A and B ) Clusters of corncobs at
the perimeter of hedgehog structures. (A) Whole mount of plaque hybridized
with probes for Corynebacterium, Fusobacterium, Streptococcus, Porphyr-
omonas, and Haemophilus/Aggregatibacter. (B ) Methacrylate-embedded section
hybridized with probes for Corynebacterium, Streptococcus, Porphyromonas,
and Haemophilus/Aggregatibacter. (C) Gallery of representative images showing
types of corncobs frequently observed. (Scale bar: C, 5 μm.)

Fig. 5. Filaments and rods of several genera intermingle at micron scales in
an annulus of the hedgehog structure. The two images shown are from
methacrylate-embedded, sectioned plaque from two different donors. Both
samples were hybridized with probes for Corynebacterium, Fusobacterium,
Leptotrichia, Streptococcus, Porphyromonas, Haemophilus/Aggregatibacter,
and Neisseriaceae; the probe set in Upper also included a probe for Capno-
cytophaga.

E796 | www.pnas.org/cgi/doi/10.1073/pnas.1522149113 Mark Welch et al.
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Hapten Fluorophore

a

b

c

d

e

Probe Target

MULTIPLEXFISH 
Painting of the entire 
chromosome complement such 
that each chromosome is 
labelled with a different 
combination of fluorophores. 
Images are collected with a 
fluorescence microscope that 
has filter sets for each 
fluorochrome, and a 
combinatorial labelling 
algorithm allows separation and 
identification of all 
chromosomes, which are 
visualized in characteristic 
pseudocolours.

SPECTRAL KARYOTYPING 
Similar to M-FISH, except that 
an interferometer is used for 
fluorochrome discrimination 
and imaging.

unique combination of absences and presences of each 
fluorochrome. In ratio labelling, different probes can 
be labelled with the same fluorochrome combinations, 
but are distinguished by the different proportions of 
the fluorochromes used.

These labelling strategies allow the simultaneous 
visualization of all 24 human chromosomes, each in 
a different colour, in a single hybridization. Specific 
technologies that use these approaches include 
MULTIPLEX FISH (M-FISH)9, SPECTRAL KARYOTYPING (SKY)10 
and COMBINED BINARY RATIO LABELLING (COBRA)11, and 
have a wide range of uses. These include the charac-
terization of structural interchromosomal aberrations 
and complex chromosomal rearrangements, which 
are often observed in tumour cells, and the analysis 
of marker chromosomes in prenatal and postnatal 
diagnostics12. Although the detection sensitivity for 
small interchromosomal rearrangements (involving 
<3 Mb of sequence) is poor using these multicolour 
approaches, resolution can be significantly improved 
by increasing the number of fluorochromes that are 
used for probe labelling13.

More specific multicolour FISH assays have also been 
developed, for example to screen particular regions of the 
genome, such as those near telomeres14,15. Furthermore, 
identifying intrachromosomal rearrangements is facili-
tated by multicolour banding technologies, such as CROSS

SPECIES COLOUR SEGMENTATION16, or by the use of overlapping 
microdissection libraries that are differentially labelled17. 
The latter method produces reproducible and unique 
patterns of fluorescence ratios along chromosomes, 
which can be transformed into a PSEUDOCOLOUR BANDING 

PATTERN using appropriate imaging software.
In addition to probe technology, there has also been 

considerable improvement in both the hardware and 
software that are used for the analysis of FISH images. 
COOLED CHARGECOUPLEDDEVICE (CCD) cameras and fluo-
rescence filter sets for microscopy that are more specific 
and efficient have improved the sensitivity and resolu-
tion of imaging, and sophisticated software facilitates 
the acquisition and processing of images.

Comparative genomic hybridization on chromosomes. 
The preparation of high-quality metaphase spreads, 
especially from solid tumours, is often difficult. As a 
consequence, leukaemias, from which metaphase chro-
mosomes are readily obtained, are more thoroughly 
investigated than solid tumours, although the latter 
represent most malignant diseases18. To overcome this 
problem, comparative genomic hybridization (CGH) 
was developed (FIG. 2f)19,20.

In CGH, DNA is extracted directly from the test 
sample and a normal reference sample. The two DNA 
samples are differentially labelled — for example, with 
the test labelled in green and the reference in red. The 
combined probes are then applied to target metaphase 
chromosomes and compete for complementary 
hybridization sites. Therefore, if a region is amplified 
in the test sample the corresponding region on the 
meta phase chromosome becomes predominantly 
green. Conversely, if a region is deleted in the test 
sample the corresponding region becomes red. The 
ratios of test to reference fluorescence along the chro-
mosomes are quantified using digital image analysis. 
Gains and amplifications in the test DNA are identi-
fied as chromosomal regions with increased fluores-
cence ratios, whereas losses and deletions result in a 
reduced ratio (FIG. 2f). One of the main advantages of 
CGH is its use as a discovery tool, as it requires no 
a priori knowledge of the chromosome imbalance 
that is involved.

The scope of CGH has been extended to include 
the analysis of small amounts of DNA that have been 
obtained from small subregions of a specimen, such 
as microdissected tumour samples, by carrying out 
un biased PCR amplification that reflects the copy 
number differences of the original genome21–23. CGH 
has even been applied to the analysis of single cells24–26, 
and such approaches have been used for prenatal diag-
nosis27,28 and analyses of MINIMAL RESIDUAL DISEASE29,30. 
Single-cell CGH results can be verified by the sequential 
application of interphase FISH followed by single-cell 
CGH of the same cell31.

Figure 1| Principles of fluorescence in situ hybridization. a | The basic elements of 
fluorescence in situ hybridization are a DNA probe and a target sequence. b | Before 
hybridization, the DNA probe is labelled by various means such as NICK TRANSLATION, RANDOM
PRIMED LABELLING and PCR. Two labelling strategies are commonly used — indirect labelling 
(left panel) and direct labelling (right panel). For indirect labelling, probes are labelled with 
modified nucleotides that contain a HAPTEN, whereas direct labelling uses the incorporation of 
nucleotides that have been directly modified to contain a fluorophore. c | The labelled probe 
and the target DNA are denatured to yield ssDNA. d | They are then combined, which allows 
the annealing of complementary DNA sequences. e | If the probe has been labelled indirectly, 
an extra step is required for visualization of the non-fluorescent hapten that uses an enzymatic 
or immunological detection system. Whereas FISH is faster with directly labelled probes, 
indirect labelling offers the advantage of signal amplification by using several layers of 
antibodies, and might therefore produce a signal that is brighter compared with background 
levels. Finally, the signals are evaluated by fluorescence microscopy (not shown). 

784 | OCTOBER 2005 | VOLUME 6  www.nature.com/reviews/genetics
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FISH = 
fluorescence in 
situ hybridization

Image taken from Speicher & Carter 
Nature 6, 782-792 (2005).

§ Principle: single-
stranded fluorescently 
labeled probes 
anneal with 
denaturated target 
DNA

§ Cells need to be 
fixated



Counting microbes: flow cytometry

21Source: Wikipedia

• Counts each cell
• Separates species with different surface 

properties and/or differently colored 
fluorescent labels

Side-scattered light

Forward-scattered light

Fluorescence filters



Counting microbes: flow cytometry

Side project

Laboratory of Molecular Bacteriology (Rega institute)34

Raw data

Side project

Laboratory of Molecular Bacteriology (Rega institute)34

Raw data

Bacteria: Staphylococcus aureus
PBS: Background

Image taken from Gerlach et al. 
Nature 563, 7733 (2018).

Roseburia intestinalis and 
Prevotella copri

Unpublished data
22



Environment

Sampling
DNA 
extraction

DNA amplification 
with universal 
primers

Microbial 
composition

Sequence processing 
(quality filtering, 
taxonomic assignment)

DNA 
sequencing

16S sequencing workflow

Reference 
database

• 16S ribosomal RNA functions as a QR code
• Hypervariable regions: taxonomic classification
• Conserved regions: binding sites for universal 
primers for DNA amplification  

Counting microbes: sequencing

23



Counting microbes: comparison

• CFUs, qPCR, FISH and flow cytometry deliver 
absolute abundances, but do not scale to 
hundreds of species
• CFU counts living bacteria; other techniques do 

not differentiate between alive & dead 
(live/dead staining possible for flow cytometry)
• Sequencing gives only relative abundances, but 

scales 
• Technical variability of sequencing tends to be 

high

24



Rarefaction/normalization: compositionality

0.00

0.50

1.00

Sample 1 Sampe 2 Sample 3 Sample 4 Sample 5

Blue taxon Red taxon Grey taxon

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Blue taxon

Red taxon

Grey taxon

Absolute 
abundances

Relative 
abundances

20
25

Counting microbes: absolute vs relative

Problem of compositionality



Investigating microbial interactions

• How do we determine the type and 
strength of a microbial interaction?

Ø Compare growth curves in mono- and 
co-culture (requires species-specific 
counts in co-culture and not just OD)

Ø Identify interaction mechanism

26



Compare growth curves

Gause (1934) “The Struggle for Existence”, Williams & Wilkins.

• Compare growth curve in 
mono- and in co-culture
• Example: Paramecium 

aurelia and P. caudatum 
competition experiment, 
which led Gause to 
formulate the 
competitive exclusion 
principle

27



Compute interaction strength

28

D and SI Appendix, Fig. S1). Replenishing the conditioned medium
with nutrients allowed us to disentangle the negative interactions.
Relatively weak negative interactions [log(0.6) = −0.51 < e <
log(1) = 0] are likely due to resource overlap, and stronger
negative interactions are likely due to warfare, e.g., via bacte-
riocins. To validate our interaction measurements using con-
ditioned medium, we performed complementary assays—spot-
on-lawn assays and coculture assays—which showed a good
agreement with the conditioned medium assays (SI Appendix,
Fig. S2).
We observed many positive and negative interactions between

isolates from polymicrobial UTIs. When we used a stringent
threshold for detecting significant interactions (SI Appendix), most
interactions were neutral, but 18% of all possible interactions were
positive, and nearly 40% of these led to a greater than twofold in-
crease in growth yield (e > 0.7) (SI Appendix, Fig. S1A). Similarly,
23% of all possible interactions were negative; most of these (78%)
were relatively weak [log(0.6) = −0.51 > e > log(0.8) = −0.22] (SI
Appendix, Fig. S1). Bacterial interactions also affected the lag phase;
many of these interactions led to a slight shortening of the lag phase
(SI Appendix, Fig. S1 D and E). The frequent occurrence of inter-
actions highlights the limitations of investigating individual bacteria
in isolation when tackling polymicrobial infections.

Interactions Are Largely Determined by Phylogeny. Statistical anal-
ysis of the global network of ecological interactions revealed key
features of interspecific relationships. Clustering the isolates by

phylogenic distance (SI Appendix) showed that the interactions
between pairs of isolates are largely determined by their respective
genera, as the phylogenetic clusters coincide with similarly clus-
tered interactions in the interaction matrix (SI Appendix, Figs. S1C
and 2 A and B). This observation supports the view that these
ecological interactions cluster based on evolutionary relatedness
(30). Within-genus interactions are predominantly negative or
neutral (Fig. 2B and SI Appendix, Fig. S3 and Table S2), consistent
with the paradigm that closely related isolates tend to have negative
interactions, often due to resource overlap (31). Among the
clearest features in the interaction network is that enterococci and
staphylococci benefit from many other genera but mostly do not
affect the others in return (Fig. 2 A and B). In contrast, Proteus
mirabilis affects many other genera negatively and is also often
negatively affected by others, confirming previous reports (32). Few
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Fig. 1. Quantifying ecological interactions between bacteria isolated from
polymicrobial UTIs. (A) Schematic illustrating a bladder environment infected
with a community consisting of different bacterial species. (B ) Preparation of
conditioned medium for interaction experiments. Bacteria were grown in
AUM for 48 h, followed by centrifugation, filtration, and replenishment with
fresh nutrients. (C) Interaction measures from growth in conditioned medium.
The growth in the conditioned medium is compared with the growth in the
reference medium (black trace) (SI Appendix) for each of the 72 isolates. For
positive interactions (red trace), the growth yield in conditioned medium (Nc)
exceeds the growth in the reference medium (Nu), e = log(Nc/Nu) > 0. For
negative interactions (blue trace), the growth in the conditioned medium (Nc)
is exceeded by the growth in the reference medium (Nu), e = log(Nc/Nu) < 0.
(D) Examples of growth curves in triplicate of Enterococcus faecalis (Upper)
and Citrobacter koseri (Lower) in medium conditioned by C. koseri (colored
traces) and reference medium (black traces). The growth of E. faecalis is pos-
itively affected by the conditioned medium (red curve above black curve),
whereas C. koseri is negatively affected by medium conditioned by another
isolate from the same species (blue curve below black curve).

Fig. 2. The global UTI interaction network reflects species phylogeny and is
enriched for competition but depleted of exploitation. (A) Pairwise interaction
matrix depicting the interactions in yield (maximum reached OD600) of 72 UTI
isolates in conditioned medium prepared from these same isolates; the in-
teraction measure is e = log(Nc/Nu) (SI Appendix). The acceptors (columns) are
grown in the conditioned medium of the donors (rows). Interactions cluster
according to phylogeny, as can be seen from the 16S rDNA phylogenetic tree
on the left. The isolates are symmetrically ordered on the horizontal and
vertical axes. Ecoli, E. coli; Ent, Enterococcus spp. (E. faecalis and E. faecium);
KECS, Klebsiella spp. (K. pneumoniae, K. oxytoca), Enterobacter cloaca, Cit-
robacter koseri, Serratia liquefaciens, and Pantoea sp4; Pm, P. mirabilis; Ps,
Pseudomonas spp. (P. aeruginosa, P. fluorescens); St, Staphylococcus spp.
(S. aureus, S. haemolyticus, S. capitis); one isolate belonging to Morganella
morganii is located between Pseudomonas and P. mirabilis. The lower left to
upper right diagonal depicts the self-interactions. (B ) Statistical analysis of
phylogenetically clustered interactions. Donors are ordered on the vertical axis
and acceptors on the horizontal axis. Red and blue correspond to respective
positive and negative interactions, respectively; dark and light gray back-
grounds depict significant over- or underrepresentation of the most prom-
inent interactions compared with randomized matrices. A white background
depicts nonsignificant over- or underrepresentation (SI Appendix). Statistics on
Morganella morganii are omitted due to small sample size (n = 1). (C) Statis-
tical analysis of all two-node motifs in the measured interaction network.
Reciprocal interactions with the same sign (−/− and +/+) and commensalism
(+/0) are overrepresented, whereas amensalism (−/0) and exploitation (+/−) are
depleted. Z scores were calculated based on the comparison with an ensemble
of random networks preserving the degree of distribution (SI Appendix).
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Interactions by Surface-Enhanced Raman
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ABSTRACT: Microbes produce bioactive chemical com-
pounds to influence the physiology and growth of their
neighbors, and our understanding of their biological
activities may be enhanced by our ability to visualize such
molecules in vivo. We demonstrate here the application of
surface-enhanced Raman scattering spectroscopy for simul-
taneous detection of quorum-sensing-regulated pyocyanin
and violacein, produced respectively by Pseudomonas
aeruginosa and Chromobacterium violaceum bacterial colo-
nies, grown as a coculture on agar-based plasmonic
substrates. Our plasmonic approach allowed us to visualize
the expression and spatial distribution of the microbial metabolites in the coculture taking place as a result of interspecies
chemical interactions. By combining surface-enhanced Raman scattering spectroscopy with analysis of gene expression we
provide insight into the chemical interplay occurring between the interacting bacterial species. This highly sensitive, cost-
effective, and easy to implement approach allows spatiotemporal imaging of cellular metabolites in live microbial colonies
grown on agar with no need for sample preparation, thereby providing a powerful tool for the analysis of microbial
chemotypes.
KEYWORDS: SERS, SERRS, plasmonic, imaging, metabolite, bacteria, quorum sensing

Bacteria rarely grow as isolated species but rather coexist
in mixed microbial communities (e.g., microbiotas),
which contribute to sustain life across our planet and

greatly influence human health.1,2 Microbial populations are
highly complex, as exemplified by the microbial mats, the
rhizosphere, or the microbes residing in the gastrointestinal
tract, which include hundreds of discrete genera living together,
frequently at high population densities.3 Within such densely
populated environments, microbes compete for nutrients and
space, engaging in intraspecies and interspecies synergistic and
antagonistic interactions.4,5 These relationships are often
mediated by low-molecular-weight bioactive chemical com-
pounds, termed specialized metabolites (SMs), which are
secreted by microorganisms to the environment, where they
can act as nutrient sources, antimicrobials, toxins, cues, and
signals for microbial chemical communication.6,7 Significantly,
many of these chemical compounds possess a remarkable range
of “drug-like” properties, and they have been one of the most

important sources of drugs and lead compounds used in
medicine and agriculture.8,9

Quorum sensing is a cell-to-cell chemical communication
process that allows bacteria to coordinate gene expression in
response to cell density and changes in the environment.10,11 In
a canonical quorum-sensing system LuxI-type enzymes
synthesize N-acyl homoserine lactones (AHL) as signals,
which freely diffuse in and out of the cell. At a threshold
concentration, they bind and activate cognate LuxR-type
transcriptional receptors, which in turn regulate the expression
of a wide range of cell activities and phenotypes, with a
preferential influence on extracellular traits such as secreted
SMs.4,12
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Predicting co-culture behavior from mono-
cultures of strains with known interactions

healthy controls (Antharam et al., 2013; Rivera-Chávez et al., 2016). Thus, high butyrate produc-

tion will probably be a quality criterion for bacterial cocktails designed for therapeutic purposes.
In R. intestinalis L1-82, fermentation of carbohydrates results in the production of butyrate as well

as hydrogen gas and carbon dioxide (Duncan et al., 2002a; Falony et al., 2009c), whereas F. praus-

nitzii A2-165 produces formate in addition to butyrate and requires acetate for growth

(Duncan et al., 2002b; Moens et al., 2016). B. hydrogenotrophica S5a33 is able to grow on carbon

dioxide and hydrogen gas, but also on glucose and fructose, in all cases generating acetate

(Bernalier et al., 1996). Therefore, as Figure 1 illustrates, our community contains multiple cross-

feeding and competitive interactions. For instance, all three strains compete for fructose. B. hydro-

genotrophica S5a33 can use the hydrogen gas generated by R. intestinalis L1-82 as well as the car-

bon dioxide and formate produced by both R. intestinalis L1-82 and F. prausnitzii A2-165. In turn, B.

hydrogenotrophica S5a33 provides acetate that is beneficial to R. intestinalis L1-82 and F. prausnitzii

A2-165. This system thus constitutes a rare example of two strain pairs that simultaneously compete

and mutually cross-feed.
The three strains were grown as mono-, bi-, or tri-cultures in 2 L laboratory fermentors in batch

mode. We monitored the dynamics of each combination by quantifying bacteria through optical

density (OD), flow cytometry and qPCR and by measuring the concentration of substrates and fer-

mentation products, including short chain fatty acids and gasses. Finally, we sequenced the total

RNA in selected samples. Figure 2 summarizes our approach. To our knowledge, this is the first

study to investigate a synthetic gut community with a combination of mono- and co-cultures, mecha-

nistic modeling and gene expression analysis.
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Figure 1. Overview of metabolite-mediated strain interactions. (A–C) Strain-specific metabolite consumption and production. (D) Metabolite-mediated

interactions present in the tri-culture. (E) Cross-feeding interactions between Faecalibacterium prausnitzii A2-165 (FP) and Blautia hydrogenotrophica

S5a33 (BH) as well as between Roseburia intestinalis L1-82 (RI) and BH. The dashed arrow from acetate to RI denotes net acetate consumption. The

dashed arrows from hydrogen and CO2 to BH indicate the potential of this bacterium to grow autotrophically on these gasses.
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consumed. Although we did not quantify gasses during screening and therefore could not ascertain

the consumption of carbon dixoide and hydrogen gas, we observed growth in the absence of an

added carbon source, indicating autotrophic growth as described previously (Bernalier et al.,

1996). Presumably, both formate and carbon dioxide are assimilated via the Wood-Ljungdahl path-

way, of which all required genes are present in the genome of B. hydrogenotrophica S5a33 accord-

ing to the AGORA database (Magnúsdóttir et al., 2017).
We also found that B. hydrogenotrophica S5a33 grew on fructose, oligofructose and glucose, as

reported by Rey et al. (2010) for B. hydrogenotrophica S5a36, and documented partial consump-

tion of these saccharides. For glucose and fructose, the maximal OD tended to be lower than for

Figure 3. Summary of fermentation data. Biological replicates are plotted together in one panel, with their mean shown in bold. For each set of

experiments, species abundances quantified by qPCR are plotted in the top half of the panel and metabolite concentrations in the bottom half. (A–C)
Monocultures of Roseburia intestinalis L1-82 (RI), Faecalibacterium prausnitzii A2-165 (FP) and Blautia hydrogenotrophica S5a33 (BH). (D–F) The three

co-culture combinations of RI, FP and BH with initial acetate. (G–H) Co-cultures of RI versus BH and FP versus BH without initial acetate. (I–J) The tri-

culture replicates are separated into those dominated by RI and BH (I) and those dominated by FP and BH (J).

DOI: https://doi.org/10.7554/eLife.37090.006

The following source data and figure supplements are available for figure 3:

Source data 1. The qPCR data and HPLC measurements are reported as the mean across three technical replicates for each of the fermentation experi-

ments shown in Figure 3.

DOI: https://doi.org/10.7554/eLife.37090.009

Figure supplement 1. Test for prokaryotic contamination with 16S rRNA gene sequencing.

DOI: https://doi.org/10.7554/eLife.37090.007

Figure supplement 2. Test for viral, prokaryotic and eukaryotic contamination in RNA-seq data.

DOI: https://doi.org/10.7554/eLife.37090.008
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Image taken from D’hoe et al. eLife 7, e37090 (2018).

• Mono-culture growth curves (qPCR)

Ø Can we predict co-
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curves?
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Figure 4. Model parameterized on monocultures does not fit co-culture data well. (A–C) Fit to monoculture experiments selected for parameterization.

(D–F) Fit to selected co-culture experiments with initial acetate. (G–H) Fit to selected co-culture experiments without initial acetate. (I–J) Fit to tri-

cultures dominated by Roseburia intestinalis L1-82 (RI) and Blautia hydrogenotrophica S5a33 (BH) versus Faecalibacterium prausnitzii A2-165 (FP) and

BH, respectively. Lines represent model predictions and dots represent observations. The whiskers represent technical variation across triplicates.

Transparent points indicate declining cell numbers; corresponding samples were not taken into account for model fitting. The unknown compound

represents an unspecified co-substrate assumed to be required by FP. Metabolites not included in the model are omitted from the plot. Experiment

identifiers indicate which of the biological replicates is displayed. The model was parameterized on experiments RI_8, RI_14, FP_4, FP_15 and BH_14.

DOI: https://doi.org/10.7554/eLife.37090.010

The following source data and figure supplements are available for figure 4:

Source data 1. The results of the simulations with the kinetic model using parameterization 1 are provided for each of the fermentation experiments

shown in Figure 4.

DOI: https://doi.org/10.7554/eLife.37090.014

Figure supplement 1. Fit to monoculture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.011

Figure supplement 2. Fit to bi-culture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.012

Figure supplement 3. Fit to tri-culture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.013
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Standard Monod equation:

Monod equation for the growth of R. intestinalis: 

LRI: Lag phase function

• Acetate boosts growth of R. intestinalis, but it can grow without it
• Without fructose, R. intestinalis does not grow
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• Mono-culture fit 

Figure 4. Model parameterized on monocultures does not fit co-culture data well. (A–C) Fit to monoculture experiments selected for parameterization.

(D–F) Fit to selected co-culture experiments with initial acetate. (G–H) Fit to selected co-culture experiments without initial acetate. (I–J) Fit to tri-

cultures dominated by Roseburia intestinalis L1-82 (RI) and Blautia hydrogenotrophica S5a33 (BH) versus Faecalibacterium prausnitzii A2-165 (FP) and

BH, respectively. Lines represent model predictions and dots represent observations. The whiskers represent technical variation across triplicates.

Transparent points indicate declining cell numbers; corresponding samples were not taken into account for model fitting. The unknown compound

represents an unspecified co-substrate assumed to be required by FP. Metabolites not included in the model are omitted from the plot. Experiment

identifiers indicate which of the biological replicates is displayed. The model was parameterized on experiments RI_8, RI_14, FP_4, FP_15 and BH_14.

DOI: https://doi.org/10.7554/eLife.37090.010

The following source data and figure supplements are available for figure 4:

Source data 1. The results of the simulations with the kinetic model using parameterization 1 are provided for each of the fermentation experiments

shown in Figure 4.

DOI: https://doi.org/10.7554/eLife.37090.014

Figure supplement 1. Fit to monoculture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.011

Figure supplement 2. Fit to bi-culture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.012

Figure supplement 3. Fit to tri-culture experiments for the model parameterized on monocultures only.

DOI: https://doi.org/10.7554/eLife.37090.013
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represents an unspecified co-substrate assumed to be required by FP. Metabolites not included in the model are omitted from the plot. Experiment
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The following source data and figure supplements are available for figure 4:

Source data 1. The results of the simulations with the kinetic model using parameterization 1 are provided for each of the fermentation experiments

shown in Figure 4.

DOI: https://doi.org/10.7554/eLife.37090.014
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Figure supplement 2. Fit to bi-culture experiments for the model parameterized on monocultures only.
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Figure supplement 3. Fit to tri-culture experiments for the model parameterized on monocultures only.
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Both FP and BH reach 
higher cell numbers 
than in mono-culture



• Metabolic responses to interaction partners 
can change kinetic parameters

• Kinetic model may therefore be unable to 
predict co-culture dynamics from mono-
cultures

• Metabolic models can deal with metabolic 
adjustments, but require good knowledge of 
the metabolism of each community member

• Both kinetic and metabolic models are hard to 
scale to hundreds of species
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Predicting co-culture behavior from mono-
cultures – conclusions



Summary part 1: growth, counting & 
interactions
• Microbial growth curve: lag phase, log phase, stationary phase
• Mathematical models of microbial growth: Logistic equation 

(ignores substrates) and Monod equation (considers 
substrates)

• Counting microbes: OD, CFUs, qPCR, FISH, flow cytometry, 16S 
sequencing

• Ecological interactions: competition, amensalism, mutualism, 
commensalism, exploitation

• Quantification of interactions: comparison of growth curves in 
mono- and co-culture

• Bacteria can change metabolism in response to interaction 
partners such that mono-cultures may not be predictive of co-
culture behavior 



Can we predict community 
behavior?



Species interact: community matrix

• The network of interacting species can be 
represented by the interaction matrix A (also known 
as community matrix), whose entries represent 
interaction strengths
• Diagonal: self-interaction strengths
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Generalized Lotka Volterra (gLV)

• The change of species abundance xi over time can 
be modeled as a function of its growth rate ri and its 
interaction strengths aij with other species j and itself
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xi = abundance of species i
aij = interaction strength 
between species i and j
ri = growth rate of species i
N = species number



Link between gLV and logistic equation 

!""
!# =r* 1 − ""

$"
"*

Redefine as carrying capacity 

!""
!# = )* + ∑+,-. ,*+"+ "*
!""
!# = r* + ,**"* "*

Re-arrange 
logistic equation

Generalized Lotka-Volterra
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Set inter-species interactions to zero
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Simulation with gLV
Community matrix
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No inter-species interactions:
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Can we predict community behavior 
from pairwise interactions?
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not have time to arise and spread. Community compositions were 
assessed by measuring the culture optical density, as well as by plat-
ing on solid agar media and counting colonies, which are distinct 
for each species25. These two measurements quantify the overall 
abundance of microorganisms in the community and the relative 
abundances of individual species, respectively. All experiments were 
carried out in duplicate.

Pairwise competitions resulted in stable coexistence or competi-
tive exclusion of one of the species. We performed competitions 

between all species pairs and found that in the majority of the pairs 
(19/28 =  68%, Fig. 2b) both species could invade each other, and thus 
stably coexisted. In the remaining pairs (9/28 =  32%) competitive  
exclusion occurred, where only one species could invade the other 
(time trajectories from one coexisting pair and one pair where 
exclusion occurs are shown in Fig. 2c. Outcomes for all pairs are 
shown in Fig. 2d). Species’ growth rate in monoculture was corre-
lated with their average competitive ability, but, in line with previ-
ous reports26, it could not predict well the outcome of specific pair 
competitions (Supplementary Fig. 3).

Next, we measured the outcome of competition between all 56 
three-species combinations. These competitions typically resulted 
in a stable community whose composition was independent of the 
starting fractions (Supplementary Table 1). However, 2 of the 56 
trios displayed inconsistent results with high variability between 
replicates. This variability probably resulted from rapid evolution-
ary changes that occurred during the competition (Supplementary 
Fig. 4). All but one of the other trio competitions resulted in stable 
communities with a single outcome, independent of starting con-
ditions. This raises the question of whether this unique outcome 
could be predicted based on the experimentally observed outcomes 
of the pairwise competitions.

Trios were grouped by the topology of their pairwise outcome 
network, which was used to predict their competitive outcomes. 
The most common topology involved two coexisting pairs, and a 
pair where competitive exclusion occurs (30/56 =  54%). To illustrate 
this scenario, consider a set of three species, labelled A, B and C,  
where species A and C coexist with B in pairwise competitions, 
whereas C is excluded when competing with A. In this case, our 
proposed assembly rule predicts that the trio competition will result 
in the survival of species A and B, and exclusion of C (Fig. 3a). This 
predicted outcome occurred for the majority of the experimentally 
observed trios (Fig. 3b), but some trio competitions resulted in less 
intuitive outcomes (Fig. 3c). For example, 1 of the 30 trios with this 
topology led to the extinction of A and the coexistence of B and C  
(Fig.  3c). The experimentally observed outcomes of competition 
in this trio topology highlight that our simple assembly rule typi-
cally works, and the failures provide a sense of alternative outcomes 
that are possible given the same underlying topology of pairwise 
outcomes. Unpredicted outcomes may occur due to several mecha-
nisms, which are considered in the Discussion.

Another frequent topology was coexistence between all three 
species pairs (15/56 =  27%), in which case none of the species is 
predicted to be excluded in the trio competition (Fig.  3d). Such 
trio competitions resulted in either the coexistence of all three spe-
cies, as predicted by our assembly rule (Fig. 3e), or the exclusion 
of one of the species (Fig. 3f). Overall, 5 different trio layouts, and 
11 competitive outcomes were observed (Fig.  3g–k). Notably, all 
observed trio outcomes across all topologies can be generated from 
simple pairwise interactions, including the outcomes that were not 
correctly predicted by our assembly rule24. An incorrect prediction 
of our simple assembly rule is therefore not necessarily caused by 
higher-order interactions.

Overall, survival in three-species competitions was well pre-
dicted by pairwise outcomes. The assembly rule predicted species 
survival across all the three-way competitions with an 89.5% accu-
racy (Fig. 4a), where accuracy is defined as the fraction of species 
whose survival was correctly predicted. To get a sense of how the 
observed accuracy compares to the accuracy attainable when pair-
wise outcomes are not known, as a null model, we considered the 
case where the only information available is the average probabil-
ity that a species will survive in a trio competition (note that this 
probability is not assumed to be available in our simple assembly 
rule). Using this information, trio outcomes could only be predicted 
with 72% accuracy (Fig. 4a and Methods). We further compared the 
observed accuracy to the accuracy expected when species interact 
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Figure 1 | A bottom-up approach to predicting community composition 
from qualitative competitive outcomes. a,b, Qualitative information 
regarding the survival of species in competitions between small sets of 
species, such as pairwise competitions (a), is used to predict survival in 
more diverse multispecies competitions, such as trio competitions (b).  
The particular pairwise outcomes illustrated here reflect the true outcomes 
observed experimentally in one set of three species (see Fig. 3b).
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not have time to arise and spread. Community compositions were 
assessed by measuring the culture optical density, as well as by plat-
ing on solid agar media and counting colonies, which are distinct 
for each species25. These two measurements quantify the overall 
abundance of microorganisms in the community and the relative 
abundances of individual species, respectively. All experiments were 
carried out in duplicate.

Pairwise competitions resulted in stable coexistence or competi-
tive exclusion of one of the species. We performed competitions 

between all species pairs and found that in the majority of the pairs 
(19/28 =  68%, Fig. 2b) both species could invade each other, and thus 
stably coexisted. In the remaining pairs (9/28 =  32%) competitive  
exclusion occurred, where only one species could invade the other 
(time trajectories from one coexisting pair and one pair where 
exclusion occurs are shown in Fig. 2c. Outcomes for all pairs are 
shown in Fig. 2d). Species’ growth rate in monoculture was corre-
lated with their average competitive ability, but, in line with previ-
ous reports26, it could not predict well the outcome of specific pair 
competitions (Supplementary Fig. 3).

Next, we measured the outcome of competition between all 56 
three-species combinations. These competitions typically resulted 
in a stable community whose composition was independent of the 
starting fractions (Supplementary Table 1). However, 2 of the 56 
trios displayed inconsistent results with high variability between 
replicates. This variability probably resulted from rapid evolution-
ary changes that occurred during the competition (Supplementary 
Fig. 4). All but one of the other trio competitions resulted in stable 
communities with a single outcome, independent of starting con-
ditions. This raises the question of whether this unique outcome 
could be predicted based on the experimentally observed outcomes 
of the pairwise competitions.

Trios were grouped by the topology of their pairwise outcome 
network, which was used to predict their competitive outcomes. 
The most common topology involved two coexisting pairs, and a 
pair where competitive exclusion occurs (30/56 =  54%). To illustrate 
this scenario, consider a set of three species, labelled A, B and C,  
where species A and C coexist with B in pairwise competitions, 
whereas C is excluded when competing with A. In this case, our 
proposed assembly rule predicts that the trio competition will result 
in the survival of species A and B, and exclusion of C (Fig. 3a). This 
predicted outcome occurred for the majority of the experimentally 
observed trios (Fig. 3b), but some trio competitions resulted in less 
intuitive outcomes (Fig. 3c). For example, 1 of the 30 trios with this 
topology led to the extinction of A and the coexistence of B and C  
(Fig.  3c). The experimentally observed outcomes of competition 
in this trio topology highlight that our simple assembly rule typi-
cally works, and the failures provide a sense of alternative outcomes 
that are possible given the same underlying topology of pairwise 
outcomes. Unpredicted outcomes may occur due to several mecha-
nisms, which are considered in the Discussion.

Another frequent topology was coexistence between all three 
species pairs (15/56 =  27%), in which case none of the species is 
predicted to be excluded in the trio competition (Fig.  3d). Such 
trio competitions resulted in either the coexistence of all three spe-
cies, as predicted by our assembly rule (Fig. 3e), or the exclusion 
of one of the species (Fig. 3f). Overall, 5 different trio layouts, and 
11 competitive outcomes were observed (Fig.  3g–k). Notably, all 
observed trio outcomes across all topologies can be generated from 
simple pairwise interactions, including the outcomes that were not 
correctly predicted by our assembly rule24. An incorrect prediction 
of our simple assembly rule is therefore not necessarily caused by 
higher-order interactions.

Overall, survival in three-species competitions was well pre-
dicted by pairwise outcomes. The assembly rule predicted species 
survival across all the three-way competitions with an 89.5% accu-
racy (Fig. 4a), where accuracy is defined as the fraction of species 
whose survival was correctly predicted. To get a sense of how the 
observed accuracy compares to the accuracy attainable when pair-
wise outcomes are not known, as a null model, we considered the 
case where the only information available is the average probabil-
ity that a species will survive in a trio competition (note that this 
probability is not assumed to be available in our simple assembly 
rule). Using this information, trio outcomes could only be predicted 
with 72% accuracy (Fig. 4a and Methods). We further compared the 
observed accuracy to the accuracy expected when species interact 
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regarding the survival of species in competitions between small sets of 
species, such as pairwise competitions (a), is used to predict survival in 
more diverse multispecies competitions, such as trio competitions (b).  
The particular pairwise outcomes illustrated here reflect the true outcomes 
observed experimentally in one set of three species (see Fig. 3b).

Image taken from Friedman et al. Nature ecology & 
evolution 1, 0109 (2017). 43

gLV assumes that 
community behavior 
can be predicted from 
pairwise interactions  



• Hypothetical assembly rule: in a multispecies 
competition, species that all coexist with 
each other in pairs will survive, whereas 
species that are excluded by any of the 
surviving species will go extinct

Can we predict community behavior 
from pairwise interactions? 

Friedman et al. Nature ecology & evolution 1, 0109 (2017). 44

Bi-culture 1 Bi-culture 3Bi-culture 2 Tri-culture



Can we predict community behavior 
from pairwise interactions? Yes

Position = final com-
position in tri-culture
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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Figure 3 | Observed and predicted outcomes of trio competitions. Changes in species fraction were measured over time for several trio competitions. a–c, 
Trios involving two coexisting pairs and one pair where competitive exclusion occurs. In these plots, each triangle is a simplex denoting the fractions of the three 
competing species. The simplex vertices correspond to a community composed solely of a single species, whereas edges correspond to a two-species mixture. 
The edges thus denote the outcomes of pair competitions, which were performed separately. Trajectories (grey arrows) begin at different initial compositions, 
and connect the species fractions measured at the end of each growth cycle. Dots mark the final community compositions. a, Schematic example, showing that 
only species A and B are predicted to coexist for this pattern of pairwise outcomes. b, Example of a trio competition that resulted in the predicted outcome.  
c, An example of an unpredicted outcome. d–f, Similar to a–c, but for trios where all species coexist in pairs. g–k, All trio layouts and outcomes, grouped by the 
topology of the pairwise outcomes network. With the exception of one trio, all trio competitions resulted in a unique outcome. Dots denote the final community 
composition (not exact species fractions, but rather species survivals). One trio displayed bistability, which is indicated by two dots representing the two 
possible outcomes. Two trios displayed inconsistent results with high variability between replicates, which is indicated by a question mark.
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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strains31. In contrast, our competitions predominantly resulted in a 
unique and stable final community. This occurred despite the fact 
that we observed complex interspecies interactions involving inter-
ference competition and facilitation (Supplementary Fig. 4). These 
results indicate that complex ecological dynamics may in fact be rare, 
though it remains to be seen whether they become more prevalent in 
more diverse assemblages. Relatedly, prediction is challenging in the 
presence of competitive cycles (for example, ‘rock–paper–scissors’  
interactions), which often lead to oscillatory dynamics, and are 

thought to increase species survival and community diversity32,33. 
Such non-hierarchical relationships are absent from our competitive 
network, and thus their effect cannot be evaluated here.

In the absence of multistability or complex dynamics, our approach 
may still fail when competitive outcomes do not provide sufficient 
information regarding the interspecies interactions. This could be 
due to higher-order interactions, which only manifest in the presence 
of additional species, or because only qualitative information regard-
ing survival is utilized. The observed accuracy of the assembly rule 
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• Drosophila melanogaster is a 
good model host system:
• Easy to keep and fast-growing
• Eggs can be sterilized and 

larvae inoculated with desired 
bacteria via food
• Only few gut microbial species
• Gut species are easily 

culturable

Can we predict community behavior 
from pairwise interactions? 

Gould et al. PNAS 115 (51), E11951-11960 (2018).

Core gut bacteria:
Lactobacillus plantarum
Lactobacillus brevis
Acetobacter pasteurianus
Acetobacter tropicalis
Acetobacter orientalis
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Kendall’s tau and Wilcoxon signed rank), consistent with stron-
ger competition at higher diversity.
We then calculated the directional interactions (i.e., A→ B vs.

B → A) using Paine’s classic approach (34), where interaction
strength is based on the change in abundance of one species when a
second species is removed (Fig. 6 B and C and SI Appendix, Math
Supplement, section 10.1 and Fig. S15 A and B). Comparing the
pairwise interaction maps at high and low diversity, we found that
interactions are generally positive when only two species are present,
consistent with interactions between two species in vitro (SI Appendix,
Fig. S15C). However, interactions become more negative at higher
diversity, consistent with increasing competition. An alternate ap-
proach to calculate the interactions, by fitting the classic generalized
Lotka–Volterra model (SI Appendix, Math Supplement, section 10.2),
gave qualitatively similar results (SI Appendix, Fig. S15 D and E).
However, parametrizing the model on low-diversity data did a poor
job of estimating the bacterial abundances at higher diversity, with n≥
3 species (SI Appendix, Math Supplement, section 10.3; P = 0.8, bi-
nomial test, n = 16), in agreement with the changing interaction
landscape at higher diversity (Fig. 6 and SI Appendix, Fig. S15).
Lastly, we asked if the interaction networks we calculated are

consistent with the maintenance of diversity we observe. We cal-
culated the asymmetry in the interaction network using the ap-
proach of Bascompte et al. (35), where asymmetry of interactions is
indexed from 0 (perfectly symmetrical) to 2 (exactly opposite). For
the low-diversity case, the mean asymmetry is 1.04 (SD = 0.13), and
for the high-diversity case, the mean asymmetry is 0.77 (SD = 0.08)
(SI Appendix, Math Supplement, section 10.1), indicating significant
asymmetry. Furthermore, analysis of the variation in total bacterial
load between individual flies showed a decreased coefficient of

variation for high diversity (SI Appendix, Math Supplement, section
9.5 and Figs. S16 and S17; P = 0.02, Wald test). Together with the
strength of interactions (Fig. 6), these calculations are consistent
with community stability at higher diversity (36).

Discussion
Bacterial Abundance Interactions May Damage the Host. The bi-
ological interactions determining the bacterial community in the
fly gut involve more than just pairs of species (37) (Figs. 4–6 and
SI Appendix, Figs. S13 and S15). These interactions generally
become weaker and more negative as diversity increases, which is
consistent with community stability through competition. With-
out some sort of stabilizing interactions, some species should
simply go extinct by chance. We do not observe evidence for
these extinctions. We also acknowledge that this five-species gut
community may have been selected for its stability in the fly vial
environment. Time series perturbation experiments could be a
better way to directly evaluate community stability (38). The
negative interactions we detect in the microbiome are associated
with shorter lifespans in the host flies, suggesting that negative
bacterial interactions may damage the host. Consistent with this
finding, microbiome removal by antibiotic treatment typically
extended lifespan (Fig. 1E). We speculate that molecular mech-
anisms for microbial damage to the host could include nutrient
depletion (SI Appendix, Fig. S10), toxic secondary metabolite
production, trigger of host immunity (11), and physical injury
through bacterial secretion systems, which have been shown to
kill flies during Vibrio/Acetobacter interactions (39).

How Much Do Higher-Order Interactions Matter? While we found
that higher-order interactions occur and are responsible for
significant changes in fly physiology, we also found that lower-
order interactions between bacterial pairs can account for more
than half of the phenotypes in three-, four-, and five-way bac-
terial combinations (Figs. 2 and 5). Thus, to harness predictive
power from low-diversity microbiomes, we must identify the reasons
why simple predictions work and when they do not. However, the
lack of convergence in traits such as lifespan and bacterial abun-
dances suggests different rules may apply to different phenotypes,
and it is unclear what rules will apply to more diverse host/micro-
biome systems. Furthermore, different conditions, such as diet
composition, could drastically change the microbiome interactions.
Decomposing interactions in increasingly diverse systems remains
an important goal for future studies.

Microbiome Interactions Mediate a Life History Tradeoff Between
Lifespan and Fecundity. Overall, we found that interactions in
the fruit fly gut microbiome structure both the fitness of the fly and
the composition of the microbiome (Figs. 2 and 4–6 and SI Ap-
pendix, Figs. S13 and S15). The magnitudes of these interactions
are often equivalent to the effects of individual species. Thus,
microbiome interactions (and not just individual species) can be a
major driver of host physiology. Many studies have documented
changes in fly lifespan as a function of various factors, including
diet, host genetics, and microbiome composition (2, 33, 40, 41).
Our study suggests that microbiome composition and the timing of
the association can have major impacts on lifespan as well as life
history tradeoffs (25). Walters et al. (27) show the consequences of
this tradeoff for ecology and evolution of wild flies.

The Drosophila Gut Microbiome Serves as an Effective Model of
Microbiome Complexity. A pervasive challenge in host/microbiome
science is the complexity of most host-associated microbiomes.
D. melanogaster has a naturally low-diversity microbiome, which
facilitates the study of this complexity. Regarding the suitability
of this model, a major question is whether such a simple system
with just five species can recapitulate the complex phenotypes
associated with higher-diversity microbiomes, such as humans
and plants. The fact that we observe emergent properties in this
simple and tractable five-species community makes it an attractive
model. Based on our empirical results, we argue that interacting

A

B C

Fig. 6. Microbiome interactions stabilize diversity in the fly gut. (A) Pairwise
correlations in abundance for the five species of bacteria in fly guts with
totals of two, three, four, and five species present. More positive correlations
are apparent at low diversity, whereas more negative correlations occur as
diversity increases (P = 0.03; SI Appendix, Math Supplement, section 10.4).
Direct calculation of interaction strength (34) at low (B, one to two species)
and high (C, four to five species) diversity based on CFU abundance data (Fig.
3B and SI Appendix, Fig. S6 ) revealed asymmetrical interactions that de-
crease in strength at higher diversity (SI Appendix, Math Supplement, sec-
tion 10.1 and Fig. S15). Consistent with the correlations in A, more negative
interactions occur in more diverse guts.
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• Clostridium difficile is an intestinal pathogen in 
mammals
• It can thrive when killing gut microbiota with 

antibiotics 
• Experiment: Mice infected with C. difficile after  

exposure to differen antibiotics

Buffie et al. Nature 517, 205-208 (2014). 48

Is it useful to look at pairwise interactions? 



• Bacterial interaction network predicted 
from fecal microbial 16S time series of mice

low alpha diversity (Fig. 2a (red box)) or at early time points after anti-
biotic exposure (Fig. 2b), suggesting that recovery of more precise micro-
biota features (for example, individual species) contributed to infection
resistance. We correlated resistance with individual bacterial species abun-
dances, corresponding to operational taxonomic units (OTUs, $97%
16S sequence similarity) (Extended Data Fig. 1d), and identified 11 bac-
terial OTUs that correlated strongly with infection resistance (Fig. 2c).
These OTUs represented a small fraction of the microbiota member-
ship (6%) and comprised primarily Clostridium cluster XIVa, including
the OTU with the strongest resistance correlation, even among animals
harbouring low alpha-diversity microbiota, C. scindens (Fig. 2c).

To relate intestinal bacterial species to C. difficile resistance in humans,
we extended our study to a cohort of patients undergoing allogeneic
haematopoeietic stem-cell transplantation (allo-HSCT). The majority
of these patients were diagnosed with a haematological malignancy and
received chemotherapy and/or total body irradiation as well as anti-
biotics during transplantation (Extended Data Table 1), incurring re-
duced microbiota biodiversity associated with increased risk of bacterial
blood stream infections8 and C. difficile infection9. Compared with con-
trolled animal studies, temporal variation in antibiotic administration
and sampling times among patients complicates analysis of relation-
ships between microbiota composition and infection susceptibility. To
address these challenges, we employed a recently developed systems
biology approach10 that integrates antibiotic delivery schedules and
time-resolved microbiota data to model mathematically the microbiota
dynamics and infer which bacteria inhibit C. difficile. We included 24
allo-HSCT patients: 12 diagnosed with C. difficile infection and 12 who
were C. difficile carriers without clinical infection (Fig. 2d and Extended
Data Fig. 2). To facilitate comparisons across data sets, we clustered
murine and human microbiota together to define OTUs that together
accounted for a majority of both the human and mouse microbiota struc-
ture (Extended Data Fig. 3a–c), and applied the modelling approach to
the murine study in parallel. We compared the normalized interaction
networks from the human (Extended Data Fig. 3d) and the murine models

(Extended Data Fig. 3e) and identified bacteria displaying strong inhi-
bition against C. difficile. Despite some differences across host species
networks, the human model identified two C. difficile-inhibiting OTUs
that were conserved in the murine model (Fig. 2e, f), the strongest of
which was C. scindens, corroborating our murine correlation-based ana-
lyses (Fig. 2c).

To evaluate causality between intestinal bacteria identified in our
analyses and infection resistance, we adoptively transferred resistance-
associated bacteria. We cultured a representative consortium of four
intestinal bacterial isolates with species-level 16S similarity to OTUs
associated with C. difficile inhibition in our mouse and human analyses
(Extended Data Fig. 4) and, after antibiotic administration, animals (n 5
10) were administered a suspension containing the four-bacteria con-
sortium or vehicle (phosphate-buffered saline (PBS)) before C. difficile
infection. Additionally, since C. scindens had the strongest resistance
associations in mice and humans (Fig. 2c, e), we included this bacte-
rium in the consortium and in a third arm alone. Adoptive transfer of
the consortium or C. scindens alone ameliorated C. difficile infection
(Fig. 3a, b and Extended Data Fig. 5a) as well as associated weight loss
(Fig. 3c and Extended Data Fig. 5b) and mortality (Fig. 3d) significantly
compared with control. Transfer of the other three isolates individually,
however, did not significantly enhance infection resistance (Extended
Data Fig. 5c). Engraftment of the transferred bacteria was confirmed
(Extended Data Fig. 5d) by 16S sequence comparison with the input
and the native intestinal bacteria from our initial analyses (Fig. 2), thus
fulfilling Koch’s postulates (albeit for a microorganism and a beneficial
health outcome). The abundance of C. scindens correlated significantly
with infection resistance (Fig. 3e), suggesting that improving bacterial
engraftment efficiency may enhance the protective effects of the adopt-
ive transfer. Importantly, bacteria transfer was precise and engraftment
did not alter other aspects of microbiota structure compared with con-
trol, including density (Extended Data Fig. 5e) and biodiversity (Fig. 3f).

We next interrogated the mechanism of C. scindens-mediated C.
difficile inhibition. Some secondary bile acids can impair C. difficile
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Figure 2 | Native intestinal bacterial species conserved across murine
and human microbiota are predicted to inhibit C. difficile infection.
Intestinal microbiota alpha diversity (a) and beta diversity (weighted UniFrac
distances) (b) of antibiotic-naive (n 5 15) and antibiotic-exposed animals
susceptible (n 5 21) or resistant (n 5 47) to C. difficile infection. c, Correlation
of individual bacterial OTUs with susceptibility to C. difficile infection.
d, Colonization (C. difficile-negative to -positive) and clearance (C. difficile-
positive to -negative) events among C. difficile-diagnosed and carrier patients

included in microbiota time-series inference modelling. Bacterial species
with strong C. difficile interactions in human and murine microbiota
models (e) that exist in a conserved subnetwork predicted to inhibit (blue)
or positively associate (red) with C. difficile (f). Species interactions in bold type
are common to mouse and human. ***P , 0.001. In c, P , 0.0005 (‘any
biodiversity’, n 5 68) or P , 0.05 (‘Low biodiversity’, Shannon diversity
index # 1 (n 5 16 animals). Centre values (mean), error bars (s.e.m.).
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Precision microbiome reconstitution restores bile
acid mediated resistance to Clostridium difficile
Charlie G. Buffie1,2, Vanni Bucci3,4, Richard R. Stein3, Peter T. McKenney1,2, Lilan Ling2, Asia Gobourne2, Daniel No2, Hui Liu5,
Melissa Kinnebrew1,2, Agnes Viale6, Eric Littmann2, Marcel R. M. van den Brink7,8, Robert R. Jenq7, Ying Taur1,2, Chris Sander3,
Justin Cross5, Nora C. Toussaint2,3, Joao B. Xavier2,3 & Eric G. Pamer1,2,8

The gastrointestinal tracts of mammals are colonized by hundreds
of microbial species that contribute to health, including coloniza-
tion resistance against intestinal pathogens1. Many antibiotics des-
troy intestinal microbial communities and increase susceptibility
to intestinal pathogens2. Among these, Clostridium difficile, a major
cause of antibiotic-induced diarrhoea, greatly increases morbidity
and mortality in hospitalized patients3. Which intestinal bacteria pro-
vide resistance to C. difficile infection and their in vivo inhibitory
mechanisms remain unclear. Here we correlate loss of specific bac-
terial taxa with development of infection, by treating mice with dif-
ferent antibiotics that result in distinct microbiota changes and lead
to varied susceptibility to C. difficile. Mathematical modelling aug-
mented by analyses of the microbiota of hospitalized patients iden-
tifies resistance-associated bacteria common to mice and humans.
Using these platforms, we determine that Clostridium scindens, a bile
acid 7a-dehydroxylating intestinal bacterium, is associated with resis-
tance to C. difficile infection and, upon administration, enhances
resistance to infection in a secondary bile acid dependent fashion.
Using a workflow involving mouse models, clinical studies, meta-
genomic analyses, and mathematical modelling, we identify a probi-
otic candidate that corrects a clinically relevant microbiome deficiency.
These findings have implications for the rational design of targeted
antimicrobials as well as microbiome-based diagnostics and thera-
peutics for individuals at risk of C. difficile infection.

Infection with C. difficile is a growing public health threat3. Suscepti-
bility to infection is associated with antibiotic use3, and faecal microbiota
transplant, which restores microbiota complexity, can resolve recurrent
infections4. However, the microbiome-encoded genes and biosynthetic
gene clusters5 critical for infection resistance remain largely undefined,
limiting mechanistic understanding and development of microbiota-
based therapies. We sought to identify, interrogate, and validate sources
of microbiome-mediated C. difficile resistance. We first investigated the
impact of antibiotics with diverse antimicrobial spectra on the intest-
inal microbiota and C. difficile susceptibility (Extended Data Fig. 1a).
Consistent with prior work from our group2, administration of clin-
damycin resulted in long-lasting susceptibility to infection (Fig. 1a). In
contrast, ampicillin induced transient susceptibility (Fig. 1c), whereas
enrofloxacin did not increase susceptibility to C. difficile infection (Fig. 1e).
C. difficile toxin expression correlated significantly with C. difficile abun-
dance in the intestine (Extended Data Fig. 1b). The antibiotic regimens
did not substantially alter bacterial density (Extended Data Fig. 1c), but
16S ribosomal RNA (rRNA) gene amplicon sequencing revealed that
the three antibiotics had distinct impacts on intestinal microbiota com-
position (Fig. 1b, d, f).

We exploited this variance in intestinal bacterial composition and
infection susceptibility to relate features of microbiota structure to C.
difficile inhibition. Infection susceptibility correlated with decreased

microbiota alpha diversity (that is, diversity within individuals) (Fig. 2a),
consistent with previous studies6. Using weighted UniFrac7 distances to
evaluate beta diversity (that is, diversity between individuals), we found
that although clindamycin and ampicillin administration induced dis-
tinct changes in microbiota structure, recovery of resistance corresponded
with return to a common coordinate space shared by antibiotic-naive
animals (Fig. 2b). However, these diversity metrics generally did not
resolve the susceptibility status of animals harbouring microbiota with

1Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. 2Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, USA. 3Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. 4Department of Biology, University of
Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. 5Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA.
6Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. 7Bone Marrow Transplant Service,Department of Medicine,Memorial Sloan Kettering Cancer Center, New York, New
York 10065, USA. 8Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.
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Figure 1 | Different antibiotics induce distinct changes to C. difficile
infection resistance and intestinal microbiota composition. Susceptibility to
C. difficile infection after administration of clindamycin (a), ampicillin (c),
or enrofloxacin (e). b, d, f, Intestinal microbiota composition at time points
indicated. Each stacked bar represents the mean microbiota composition
of three separately housed animals. Centre values (mean), error bars
(s.e.m.) (a, c, e).
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Precision microbiome reconstitution restores bile
acid mediated resistance to Clostridium difficile
Charlie G. Buffie1,2, Vanni Bucci3,4, Richard R. Stein3, Peter T. McKenney1,2, Lilan Ling2, Asia Gobourne2, Daniel No2, Hui Liu5,
Melissa Kinnebrew1,2, Agnes Viale6, Eric Littmann2, Marcel R. M. van den Brink7,8, Robert R. Jenq7, Ying Taur1,2, Chris Sander3,
Justin Cross5, Nora C. Toussaint2,3, Joao B. Xavier2,3 & Eric G. Pamer1,2,8

The gastrointestinal tracts of mammals are colonized by hundreds
of microbial species that contribute to health, including coloniza-
tion resistance against intestinal pathogens1. Many antibiotics des-
troy intestinal microbial communities and increase susceptibility
to intestinal pathogens2. Among these, Clostridium difficile, a major
cause of antibiotic-induced diarrhoea, greatly increases morbidity
and mortality in hospitalized patients3. Which intestinal bacteria pro-
vide resistance to C. difficile infection and their in vivo inhibitory
mechanisms remain unclear. Here we correlate loss of specific bac-
terial taxa with development of infection, by treating mice with dif-
ferent antibiotics that result in distinct microbiota changes and lead
to varied susceptibility to C. difficile. Mathematical modelling aug-
mented by analyses of the microbiota of hospitalized patients iden-
tifies resistance-associated bacteria common to mice and humans.
Using these platforms, we determine that Clostridium scindens, a bile
acid 7a-dehydroxylating intestinal bacterium, is associated with resis-
tance to C. difficile infection and, upon administration, enhances
resistance to infection in a secondary bile acid dependent fashion.
Using a workflow involving mouse models, clinical studies, meta-
genomic analyses, and mathematical modelling, we identify a probi-
otic candidate that corrects a clinically relevant microbiome deficiency.
These findings have implications for the rational design of targeted
antimicrobials as well as microbiome-based diagnostics and thera-
peutics for individuals at risk of C. difficile infection.

Infection with C. difficile is a growing public health threat3. Suscepti-
bility to infection is associated with antibiotic use3, and faecal microbiota
transplant, which restores microbiota complexity, can resolve recurrent
infections4. However, the microbiome-encoded genes and biosynthetic
gene clusters5 critical for infection resistance remain largely undefined,
limiting mechanistic understanding and development of microbiota-
based therapies. We sought to identify, interrogate, and validate sources
of microbiome-mediated C. difficile resistance. We first investigated the
impact of antibiotics with diverse antimicrobial spectra on the intest-
inal microbiota and C. difficile susceptibility (Extended Data Fig. 1a).
Consistent with prior work from our group2, administration of clin-
damycin resulted in long-lasting susceptibility to infection (Fig. 1a). In
contrast, ampicillin induced transient susceptibility (Fig. 1c), whereas
enrofloxacin did not increase susceptibility to C. difficile infection (Fig. 1e).
C. difficile toxin expression correlated significantly with C. difficile abun-
dance in the intestine (Extended Data Fig. 1b). The antibiotic regimens
did not substantially alter bacterial density (Extended Data Fig. 1c), but
16S ribosomal RNA (rRNA) gene amplicon sequencing revealed that
the three antibiotics had distinct impacts on intestinal microbiota com-
position (Fig. 1b, d, f).

We exploited this variance in intestinal bacterial composition and
infection susceptibility to relate features of microbiota structure to C.
difficile inhibition. Infection susceptibility correlated with decreased

microbiota alpha diversity (that is, diversity within individuals) (Fig. 2a),
consistent with previous studies6. Using weighted UniFrac7 distances to
evaluate beta diversity (that is, diversity between individuals), we found
that although clindamycin and ampicillin administration induced dis-
tinct changes in microbiota structure, recovery of resistance corresponded
with return to a common coordinate space shared by antibiotic-naive
animals (Fig. 2b). However, these diversity metrics generally did not
resolve the susceptibility status of animals harbouring microbiota with

1Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. 2Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, USA. 3Computational Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA. 4Department of Biology, University of
Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA. 5Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan-Kettering Institute, New York, New York 10065, USA.
6Genomics Core Laboratory, Sloan-Kettering Institute, New York, New York 10065, USA. 7Bone Marrow Transplant Service,Department of Medicine,Memorial Sloan Kettering Cancer Center, New York, New
York 10065, USA. 8Immunology Program, Sloan-Kettering Institute, New York, New York 10065, USA.
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Figure 1 | Different antibiotics induce distinct changes to C. difficile
infection resistance and intestinal microbiota composition. Susceptibility to
C. difficile infection after administration of clindamycin (a), ampicillin (c),
or enrofloxacin (e). b, d, f, Intestinal microbiota composition at time points
indicated. Each stacked bar represents the mean microbiota composition
of three separately housed animals. Centre values (mean), error bars
(s.e.m.) (a, c, e).
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growth in vitro11,12, but the source and contribution of such metabolites
to infection resistance in vivo remain unclear. Noting that C. scindens
expresses enzymes crucial for secondary bile acid synthesis13 that are
uncommon among intestinal bacteria14, we hypothesized that the C.
difficile-protective effects of C. scindens may derive from this rare bio-
synthetic capacity. Analyses of antibiotic-exposed animals (Figs 1 and 2)
revealed that recovery of secondary bile acids and the abundance of the
gene family responsible for secondary bile acid biosynthesis (as pre-
dicted using PICRUSt15) correlated with C. difficile resistance (Fig. 4a, b).
Targeted microbiome analysis of the gene family responsible for sec-
ondary bile acid biosynthesis indicated that abundance of the bile acid
inducible (bai) operon genes correlated strongly with resistance to C.
difficile infection (Fig. 4c) but that bile salt hydrolase (BSH)-encoding
gene abundance did not. These results are consistent with reports indi-
cating that BSH-encoding genes are distributed broadly while an extre-
mely small fraction of intestinal bacteria possess a complete secondary
bile acid synthesis pathway14. PCR-based assay of baiCD, which encodes

the 7a-hydroxysteroid dehydrogenase enzyme critical for secondary
bile acid biosynthesis, revealed that animals that had recovered C. dif-
ficile resistance after antibiotic exposure harboured a baiCD1 micro-
biome, whereas susceptible animals did not (Extended Data Fig. 6a).

Recipients of either the consortium or C. scindens harboured baiCD1

microbiomes with restored abundance of secondary bile acid biosyn-
thesis genes (predicted by PICRUSt) (Extended Data Fig. 6b). Admini-
stration of either bacterial suspension also restored relative abundance
of the secondary bile acids deoxycholate (DCA) (Fig. 4d) and litho-
cholate (LCA) (Extended Data Fig. 7a), both of which inhibit C. difficile
in a dose-dependent fashion (Extended Data Fig. 8a, b), but abundances
of primary bile acids were not significantly altered (Extended Data Fig. 7).
Metagenomic inference indicated that consortia recipients harboured
microbiomes with greater abundances of secondary bile acid biosyn-
thesis genes than C. scindens recipients (Extended Data Fig. 6b), perhaps
explaining their superior resistance to C. difficile. However, intestinal
abundances of DCA and LCA were each comparable in the consortia
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• Treating mice with bacteria that interact 
negatively with C. difficile increases their 
survival rate

Is it useful to look at pairwise interactions?
Sometimes it is.

Clostridium scindens 
produces secondary bile 
acids that inhibit C. difficile

Buffie et al. Nature 517, 205-208 (2014). 50

(control)



Summary part 2: community dynamics

• Community model: generalized Lotka-Volterra (gLV)
• GLV takes interaction matrix (= network) as input
• GLV assumes absence of higher-order interactions
• Co-occurrence analysis = network inference
• Network inference technique: significant covariance 
• Microbial networks can predict ecological interactions
• Confounding factors exist: experimental validation is 

necessary
• Microbial networks can reveal niche structure
• Microbial networks predict keystone species with low 

accuracy; experimental validation is necessary



Take-home messages

• We can quantify microbial interaction strengths with 
mono- and co-cultures, but for this, we need to count 
species separately
• Co-culture dynamics can be hard to predict because 

microorganisms can change their metabolism in 
response to interaction partners
• Community behavior can be hard to predict because of 

higher-order interactions
• Interaction candidates can be predicted from 

community data with network inference
• Inferred interactions need to be experimentally validated





Appendix: Kinetic community model

!!
dX0
dt

= Γ0Φ0(S0 ,S2)X0 !!
Φ0(S0 ,S2)= µ0
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dX1
dt
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Constants
µi: max growth rate of species i
ωi: nutrient weight of species i
Qi: lag phase variable of species i

νij: production/consumption rate of 
metabolite i by species j
Kij: Monod constant of species i for 
metabolite j 

!!
dX2
dt

= Γ2Φ2(S0 ,S1)X2 !!
Φ2(S0 ,S1)= µ2
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Species (X)
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compound
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abundances over time

Change of substrate 
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• Final abundance ratio for RI and FP predicted with 
the model agrees with experimental observations

Appendix: Community model parameterized 
with mono- and bi-cultures fits tri-culture well

Lag phase varied; initial 
abundances kept constant

Initial abundances varied (log scale), lag 
phase kept constant (final abundance ratio 
in experiment 12 deviates from prediction)


