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Growing microorganisms

Bioreactor

« Controlled atmosphere

« Controlled temperature

« Well-mixed liquid

» Closed: batch

* |In- and outflow: chemostat

Microbial growth: increasing
turbidity (opfical density =
OD) in a photometer




Microbial growth curve

3: Exponential 4: Refardation phase 4: Phase of
(Log) phase  OS: Stationary phase  decline (death)
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Figure taken from Jacques Monod: “The Growth of Bacterial
Cultures”, Annual Rev. Microbiology 1949, 371-3%4.



Logistic equation

* In batch, bacteria enter stationary phase when they
run out of food

* The less food they have, the slower they grow
« Bacterial biomass is constrained (carrying capacity)

 Logistic equation describes this behaviour:

x: Blomass
K: Carrying capacity
r: (Intrinsic) growth rate

fer()x 0 B(1-):



Abundance

Logistic growth
S-shaped (sigmoid) curve

Logistic growth, r=1.5
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Carrying capacity

dx (K—x)
—=I\— ) X
dt K



Monod kinetics

« Carrying capacity depends on available
nutrients

« Monod equation describes how growth
depends on rate-limiting nutrient

« Monod eqguation also assumes that with more
and more substrate bacteria benefit less and
less (saturation)

S: Substrate concentration
dx S ) x: Biomass

E_:u‘maxx (KS+S Ks: Saturation/Monod constant
Umax. MAXimum specific growth rate




Monod kinetics - examples

S dx __ S
U= —HUmaxX
max \g<+s dt Kg+S
g Lsh 04 30
o 2 A o 2 o 0.3 1 .
MxI9~* GLUCOSE ° 5 ° 5 10 15 20 25 30 35
Time (h) Time (h)

Example from Monod 1949: Growth Example from Feng et al. 2012: Biomass
rate change of E. coli with glucose  change in Shewanella oneidensis in
concentration. Increase in growth  batch modeled with Monod equation.
rate slows down with increasing Decreasing substrate (lactate) slows
substrate concentration: saturation down biomass increase non-linearly (S
kinetics changes as a function of x).




More than one microbial species...




Microorganisms interact: competition

f Interference compe’ri’rion\
(Direct)

Passive competition
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Microorganisms interact: competition

Example

Ferric iron

Fe (II)

Siderophores

Passive competition
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_______ Piracy

Antibiotics

Interference competition

Passive competition:
Pseudomonas aeruginosa
excrete siderophores to
transport ferric iron inside the
cell, so competitors cannot
access if.

Interference competition:
Pseudomonas aeruginosa
produces antibiotics to
compete with Staphylococcus
aureus in the cystic fibrosis
lung.

Image taken from Szamosvari et al. Organic & Biomolecular Chemistry 16,

2814 (2018).



Microorganisms interact: cross-feeding

@ N

Mutualism




Microorganisms interact: cross-feeding

Example

Sulphate oxidizer, Sulphate reducer,
consumes HS-and consumes SO42- and
produces SO42 produces HS-

Image source: wikipedia

Marine worm
relies entirely on
symbionts for
feeding (it lacks
mouth, gut and
anus)

Image taken from Woyke et al. Nature 443, 950-955 (2006).



Microorganisms interact: endosymbiosis

Endosymbiosis

Parasitism

Image taken from de Vargas et al. Science 348, 1261605 (2015).
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Microorganisms interact: biofilms

Oxygen and nutrient rich (Saliva)

“Corncob” structures
iINn dental plague with
Corynebacteria
flaments at the base
and

COCCI on top

Oxygen and nutrient poor (Tooth)

Corynebacterium B Fusobacterium
B Streptococcus B Leptotrichia

Porphyromonas Capnocytophaga
B Haemophilus/Aggregatibacter Neisseriaceae

Image taken from de Welch et al. PNAS, E791-E800 (2016).



Classifying microbial interactions

Predator/parasite (win-loss)

Commensalism

) Amensalism
(win-neutral)

(neutral-loss)
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Predqﬂon % Adapted from Lidicker,
parasitism = W.Z. BioScience 29, 475-

exploitation Prey/host (|OSS—Wiﬂ) 477 (1979). -



Factors shaping microbial interactions

Specificity How many potential and
actual intferaction partners
are theree¢

Space Particular spafial

arrangement or physical
contact required?

Environment Do physical or chemical
properties of the
environment influence the
inferactione

Time Does interaction depend on
a circadian cycle or a
particular growth phase?

Modified from: Pacheco & Segre FEMS
Microbiology Letters 366, fnz125 (2019).



Investigating microbial interactions

« Opftical density does not differentiate
between different species

» Challenge: We need to count microbial
species separately in mixtures

I
i
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Counting microbes: CFU

Colony of (bacteria):

A cluster of cells (or clones) which
- arise from a single bacterium by
asexual reproduction

Sample to
1 mi be counted

Dilution ==

1ml 1ml 1Tmi 1ml 1Tml
i M M M MY
Dilution series
9-ml
broth -
1710 17100 1/10° 17104 1/10° 1/10°
(107" (1079) (1079) (10 (1079 (109

Plate 1-ml samples

_ 1 l 1 l l When a sample is
QR T e I e plated, each colony
3y L 3 Rl that grows represents a
& e single cell (or spore) in
. )} 159 17 2 0 the original sample
Too many colonies colonies colonies colonies colonies
to count
159 x 10° = 1.59 x 10°
Plate Dilution Cells (colony- Colony count multiplied
count factor forming units) per by the dilution factor
milliliter of original
sample

CFU = colony-
forming units

= Strains need to be
cultivable

= Microbial species
can only be
counted
separately in case
morphology differs

Source:
hitp://loretocollegebiolog
y.weebly.com/measuring-
bacterial-growth.html#
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http://loretocollegebiology.weebly.com/measuring-bacterial-growth.html

Counting microbes: quantitative PCR

oz e @2« TagMan: gPCR with species-

—

e specific primers and probes
Microbial DNA o

Reverse PCR primer

Amplification Assay * QuenCher Suppresses
Polymerization - @ Q fluorescence

~-----=— * Primer binds species-specific site

v' Probe displacement

Fiorescence and ceavage » Taqg polymerase extends primer
U R until it reaches probe
e = Tagman polymerase cleaves
V' urescence probe, releasing fluorescence
— e P

PCR Products Cleavage Products

Source: Wikipedia
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Counting microbes: FISH

situ hybridization

a T = Principle: single-
gt e stranded fluorescently
- | labeled probes
i it anneal with
%lwi i%:ui denaturated targeft
c % ”’i""""“i""' TITTTTTTTT T DNA
% i“‘”if*”i T = Cells need to be
o ! fixated
W%Tufm T T

Y Hapten © Fluorophore

Image taken from Speicher & Carter
Nature 6, 782-792 (2005).
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Counting microbes: flow cytometry

« Counts each cell

« Separates species with different surface
cisampe  properties and/or differently colored

Y — fluorescent labels
rThE v ssc Side-scattered light
Dichroic I FL-2
mirror w
\ I FLl | apc | Fluorescence filters
FL3 ||
Cell
_
Flter
m Forward-scattered light
4
Flow sheath Obscuration bar r

Analysis workstation

Source: Wikipedia 21



Counting microbes: flow cytometry

FSC-H

Bacteria: Staphylococcus aureus
PBS: Background

Image taken from Gerlach et al.
Nature 563, 7733 (2018).
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°
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4.00 425 450
50 4.75
stg 525550 5.75 .00 25 30 e

Roseburia intestinalis and
Prevotella copri

Unpublished data
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Counting microbes: sequencing

* 16S ribosomal RNA functions as a QR code

» Hypervariable regions: taxonomic classification
« Conserved regions: binding sites for universal
primers for DNA amplification

_ DNA DNA amplification DNA Sequence processing
Sampling extraction  with universal sequencing (qudlity filtering,
primers taxonomic assignment)
y $ :. . 1
>, A 2 A
-
, /
IS /
EN

Microbial
Environment composition mY o o3




Counting microbes: comparison

» CFUs, gPCR, FISH and flow cytometry deliver
absolute abundances, but do not scale to
hundreds of species

« CFU counts living bacteria; other techniques do
not differentiate between alive & dead
(live/dead staining possible for flow cytometry)

« Sequencing gives only relative abundances, but
scales

» Technical variability of sequencing tends to be
high



Counting microbes: absolute vs relative

Problem of compositionality

-~

Blue taxon

Red taxon

{rey taxon

Sample1l Sample2 Sample3  Sample4 Sample 5\

)
A \
<,
S 2 g Rl

/ 1.00

0.50

0.00

Sample 1 Sampe 2 Sample 3 Sample 4 Sample 5

mBluetaxon mRed taxon Grey taxon

Absolute
abundances

Relative
abundances
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Investigating microbial interactions

 How do we determine the type and

sfrength of a microbial interactione
[

T

» Compare growth curves in mono- and
CO-cuUlture (requires species-specific
counts in co-culture and not just OD)

> ldentify inferaction mechanism



Compare growth curves

L e « Compare growth curve in
grown separately et mono- and in co-culture
o i = i e e e

« Example: Paramecium
aurelia and P. caudatum

— P, aurelia

~—— P. caudatum competition experiment,
v v v v | wWhichled Gause to
grown in mixed culture formulate the
competitive exclusion
principle

Gause (1934) “The Struggle for Existence”, Williams & Wilkins. 27



Compute interaction strength

Growth curve in co-
culture - Positive impact

Reference (Mono-culture)

Growth curve in co-
culture - Negative impact

log(ODgqo)

time image adapted from de Vos et al. PNAS 10666-10671 (2017).

. Interaction type
Interaction strength computed for

o -,- = competition
both species: -0 = amensalism
Positive, neutral or negative |:> -+ = exploitation

+,+ = mutualism
o ( yield_co )>=O log( yield ¢o ) <0 +,0 = commensalism
yield_mono yield mono

+,- = exploitation

28



Identify interaction mechanism

Examples
Genome analysis to * Imaging of chemicals
identify complementary involved in interactions

pathways

Raman spectroscopy of molecules
involved in interference competition

81 symbiont

Disrupts
quorum
sensing

u1992e|oIA

Regulates
quorum
sensing in P.
aeruginosa

nnnnnnnnnnn

u!ue/(oo/(d-

A Au@agar

Image taken from Bodeldn et al.

Image taken from Woyke et al. ACS Nano 11, 4631-4640 (201 7).
Nature 443, 950-955 (2006). 29



Can we predict co-culture behavior when
interaction mechanisms are known?

Image taken from Lei Tang, Nature
Methods 16, 19 (2019).
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Predicting co-culture behavior from mono-
cultures of strains with known interactions

Example: Human gut bacterial community grown in vitro

Roseburia Faecalibacterium Blautia hydrogeno-
intestinalis L1-82 prausnitzii A2-165 trophica S5a33

Buyrate>  (H)



Predicting co-culture behavior from mono-
cultures

« Mono-culture growth curves (QPCR)

150

. 100 R. intestinalis ] F. prausnitzii
aév 50 s 0‘..'0. -
X 0 ... hd _mmm_.._.l ° [ ] e |
i —— fructose
—— formate
o (IIIIIITITIT] —— acetate
! ' § " ] , —— butyrate
2]0 3|0 4IO 50 0 10 2|0 3|0 4|0 50 unknown
Time (hours) Time (hours)
__ 150 C02
g 1004 B. hydrogenotrophica
NI
2l 50 3 .
<] esets o o » Can we predict co-
& 100 culture growth
S
= 50 00000009
5 "$000844y : curves?
%% 10 20 30 40 50

Time (hours)

Image taken from D'hoe et al. elife 7, e37090 (2018). 32



Predicting co-culture behavior from mono-
cultures — kinetic model
« Key nutrients consumed and produced are known

« Extend Monod equation to capture more complex
behavior

. dx_ S
Standard Monod eqguation: —; HmaxX (K5+S)

Monod equation for the growth of R. infestinalis:

AXR1 SFructose ( SAcetate )
=Up;X 1+ w L
dat ‘uRI RI KRI_glucose +SFructose RI KRI_acetate +SAcetate RI

« Acetate boosts growth of R. intestinalis, but it can grow without it
« Without fructose, R. infestinalis does not grow

Lri: LOg phase function



Predicting co-culture behavior from mono-
cultures — model fit

« Mono-culture fit

100 R. intestinalis F. prausnitzii

¢
50 ot

—— fructose
—— formate

E 50 -W‘ @ v * ° P=0=0-0-0-0-0-0-0-0-,. - acetate
& e ® _ _ _ _ l —— butyrate
unknown

_@— * * . ® | M T

0 10 20 30 40 500 10 20 30 40 50
Time (hours) Time (hours)

150

3z 100 1 B. hydrogenofrophica
T

108

Si (mM)

50 Peete 88885,

0 10 20 30 40 50
Time (hours)

Image taken from D'hoe et al. elife 7, e37090 (2018). 34



Predicting co-culture behavior from mono-
cultures — model fit

)

108Counts

Xi (

Si (mM)

108 ]

« Co-culture fit

Bacteria
. Faecalibacterium prausnitzii
: Leegt! °° | Blautia hydrogenotrophica
. 1! ° @
—— fructose
o000 ) ® ® — formate
° — acetate
J 00 ® @ ® — butyrate
M“ — — - unknown
0 10 20 30 40 50
Time (hours)
Solid lines: Abundances and concentrations Both FP and BH reach
predicted based on mono-culture data higher cell numbers
Dots: Observed abundances/concentrations than in mono-culture

Image taken from D'hoe et al. elife 7, e37090 (2018). 35



Predicting co-culture behavior from mono-
cultures — conclusions

* Metabolic responses to intferaction partners
can change kinetic parameters

« Kinetic model may therefore be unable to
predict co-culture dynamics from mono-
cultures

* Metabolic models can deal with metabolic
adjustments, but require good knowledge of
the metabolism of each community memlber

» Both kinetic and metabolic models are hard to
scale to hundreds of species



Summary part 1: growth, counting &
Interactions

Microbial growth curve: lag phase, log phase, stationary phase

Mathematical models of microbial growth: Logistic equation
(ignores substrates) and Monod equation (considers
substrates)

Counting microbes: OD, CFUs, gPCR, FISH, flow cytomeitry, 16S
sequencing

Ecological interactions: competition, amensalism, mutualism,
commensalism, exploitation

Quantification of interactions: comparison of growth curves in
mono- and co-culture

Bacteria can change metabolism in response to interaction
partners such that mono-cultures may not be predictive of co-
culture behavior



Can we predict community
behavior?




Species interact: community matrix

* The network of interacting species can be
represented by the intferaction matrix A (also known
as community matrix), whose entries represent
Interaction strengths

« Diagonal: self-interaction strengths

Interaction network Interaction matrix
Blue Purple Orange
an) - I
rule [ I

Orange

?—» -
N
39




Generalized Lotka Volterra (gLV)

« The change of species abundance x; over time can
be modeled as a function of its growth rate r. and its
interaction strengths a; with other species j and itself

N X; = abundance of species i
dXi a; = interaction strength
— =X;| 1; + aiiXi between speciesiand j
J77] o
dt . r= growth rate of species |

]j=1 N = species number



Link between gLV and logistic equation

dx; N
[ d_tl — (Ti + Zj=1 aUX]) Xi } Generalized Lotka-Volterra

{} Set inter-species interactions to zero

dxl-_
—=(r; + aux;) % | |
@ Re-arrange growth rate term Self-inferaction
dx; T sfrength on the
ar Ui - Gk ) L diagonal of the
Scaled self-interaction strength is IHTGFQCTIOH mCITI:IX =
negative carrying capacity
dxi_,. (1 _ %
PTG Y
dt ]

@ Redefine as carrying capacity

dx; ( xi) J | > [dxi_ (Ki—xi) }
—i=p (1 —2) x] re. —=T; X;
[dt i K; [ Re-arrange dt l K; l .

logistic equation
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Simulation with gLV
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Time points
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Can we predict community behavior
from pairwise interactions?

% gLV assumes that
e community behavior

u can be predicted from
B ) pairwise interactions

B
Can we predict
A C the outcome ?
A C A excludes C -
_— T
}6{ ~

Image taken from Friedman et al. Nature ecology &
evolution 1, 0109 (2017).
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Can we predict community behavior
from pairwise interactions?

* Hypothetical assembly rule: in a mulfispecies
competition, species that all coexist with
each other in pairs will survive, whereas
species that are excluded by any of the
surviving species will go extinct

Bi-culture 1 Bi-culture 2 Bi-culture 3 Tri-culture

Jou® Yo § ¥~

Friedman et al. Nature ecology & evolution 1, 0109 (2017). 44




Can we predict community behavior
from pairwise interactions? Yes

« All fri-cultures with 8 soll bacteria
tested (CFU counts)

» Survival in 40 out of 56 correctly
predicted with assembly rule

Position = final com-
position in tri-culture

. . B —>k«— A A and B coexist
Example configurations: Example case:

B —>—> A A excludes B
ﬁ P . Community
C B C B trajectory

22 i
8 PREN

Predicted survival in
(out of 30) (out of 15) tri-culture

Friedman et al. Nature ecology & evolution 1, 0109 (2017). 45




Can we predict community behavior
from pairwise interactions?

» Drosophila melanogaster is a
good model host system:

« Easy to keep and fast-growing

« Eggs can be sterilized and
larvae inoculated with desired

Core gut bacteria:

bacteria via food Lactobacillus plantarum
- Only few gut microbial species  Lactobacillus brevis
4 .g . P Acetobacter pasteurianus
« GUt species are easily Acetobacter tropicalis
culturable Acetobacter orientalis

Gould et al. PNAS 115 (51), E11951-11960 (2018).



Can we predict community behavior
from pairwise interactions? No

Interaction strengths in the presence of N species:

N: 4-5 » Presence of
other species
\ a alters interaction

signs and
// strengths
> Higher-order

counts interactions
\— positive interaction \—» hegative interaction ma .I..I.er
@ Lactobacillus plantarum @ Acetobacter pasteurianus
(O Lactobacillus brevis @ Acetobacter tropicalis

@ Acetobacter orientalis

Gould et al. PNAS 115 (51), E11951-11960 (2018). 47



Is it useful to look at pairwise interactions?

« Clostridium difficile is an intestinal pathogen in
mammals

* [t can thrive when killing gut microbiota with
anftibiofics

« Experiment: Mice infected with C. difficile after
exposure to differen antibiofics

(% s =2
= /) I >
- 2 \ S -
W RS

Buffie et al. Nature 517, 205-208 (2014).



Is it useful to look at pairwise interactions?

» Bacterial inferaction network predicted
from fecal microbial 16S time series of mice

2 400

o — e e

o

2 »

o)

©

o

= >
C_*E;' 0l " (] |

[0}

o -2 1 6 10 14 21

Time
(days after clindamycin administration)

Bacterial family

Bacteroidaceae B Lachnospiraceae
Porphyromonadaceae Peptostreptococcaceae
B s24-7 Ruminococcaceae

Staphylococcaceae Coprobacillaceae

- Enterococcaceae . Erysipelotrichaceae
Lactobacillaceae Enterobacteriaceae

I streptococcaceae Verrucomicrobiaceae

I Turicibacteraceae Coriobacteriaceae

I Clostridiaceae

Buffie et al. Nature 517, 205-208 (2014).

C. populeti

(OTU 10) o

o
O

0]

C. scindens (OTU 6)

)

E. avium
(OTU 2)
o

(0] O

C. difficile
O
O
(@]

Predicted network

Positive

Negative 4o



Is it useful to look at pairwise interactions?
Sometimes it is.

» Treating mice with bacteria that interact
negatively with C. difficile increases their
survival rate

e o Suspension
' 100 administered
- © -o- PBS (control)
*x -0- Four bacteria
50 o}

-0- C. scindens

Survival (%)

Clostridium scindens
0 10 20 produces secondary bile

< Time (d) acids that inhibit C. difficile
(after C. difficile challenge)

0

Buffie et al. Nature 517, 205-208 (2014).



Summary part 2: community dynamics

« Community model: generalized Lotka-Volterra (gLV)

« GLV takes interaction matrix (= network) as input

« GLV assumes absence of higher-order interactions

« Co-occurrence analysis = network inference

* Network inference technique: significant covariance

« Microbial networks can predict ecological inferactions

« Confounding factors exist: experimental validation is
necessary

 Microbial networks can reveal niche structure

« Microbial networks predict keystone species with low
accuracy; experimental validation is necessary



Take-home messages

« We can quantity microbial interaction strengths with
mono- and co-cultures, but for this, we need to count
species separately

« Co-culture dynamics can be hard to predict because
microorganisms can change their metabolism in
response to inferaction partners

« Community behavior can be hard to predict because of
higher-order interactions

 Inferaction candidates can be predicted from
community data with network inference

 Inferred interactions need to be experimentally validated






Appendix: Kinetic community model

Change of species
abundances over time

ax,
E: L@, (5., )X,

Growth functions

Stefan Vet
Didier Gonze

D (S, )=y —>—1+w ——
ol )‘uOI{OO+ ( 0K02+ j

dX
1 _ o (5,5, )= 1+w
dt _F1(D1( 1 )X1 ( =4, K +5 K + 'K+
dX 5,
—2_-T & SX @,(5,5)=H, T,
dt 2 2( ) 1) 2 K20+ K21+51
Change of§ ubsirate . Lag phase function Species (X)
concenirations over time R infestinglis
ds. Q dQ; F prausnitzii
d_tl =— VU(I)].I.X] I,= 1+Q  dt = 1 B. hydrogenotrophica
J=0 Substrates (S)
Constants

M;: max growth rate of species |
;. nutrient weight of species i
Q;: lag phase variable of species i

v;;: production/consumption rate of
metabolite i by species |

K;: Monod constant of species i for
metabolite |

Formate




Appendix: Community model parameterized
with mono- and bi-cultures fits tri-culture well

* Final abundance ratio for Rl and FP predicted with
the model agrees with experimental observations

- 0.25

- 0.00

RI—FP
RI+FP

Time lag FP (h)
Init. abund. FP

=
g
—
o

- —-0.25

.RI

- -0.50

-1.00

-4 -3 -2 -1 0 1

Time lag R/ (h) Init. abund. RI
Lag phase varied; inifial Initial abundances varied (log scale), lag
abundances kept constant phase kept constant (final abundance ratio

in experiment 12 deviates from prediction)



